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ABSTRACT

When non-native speakers learn English, their first language influences how they learn. This is
known as L1-L2 language transfer, and linguistic studies have shown that these language trans-
fers can affect writing as well. If there were a model that exploits L1-L2 language transfer to
identify the authors’ native language, it would be an invaluable tool for the intelligence commu-
nity as well as in the field of education. Therefore, the objective of this research is to find out
if it is possible to automatically detect the author’s native language based on his/her writing in
English using traditional machine learning techniques. For this research, we used eight differ-
ent collections of writings by speakers of eight different nationalities: native English speakers
as well as speakers of Bulgarian, Chinese, Czech, French, Japanese, Russian, and Spanish.
Among the various feature sets used in this research, character trigrams and bag of words alone
achieved higher than 80% accuracy, and the empirical analysis of character trigrams revealed
that the character trigrams just model lexical usage. When content words were extracted, the
performance dropped and the results revealed that the topic words were doing all the work.
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CHAPTER 1:
Introduction

1.1 Motivation
Writing in English has always been a difficult task for non-native speakers. Even after studying
the mechanics and grammar rules for years, it is a very difficult task for non-native speakers to
write with the same natural flow found in writings by native speakers. Moreover, when non-
native speakers write, they leave trails, whether mistakes or just a unique pattern influenced
by their first language, which is known as first language (L1) - second language (L2) language
transfer. For example, in Korean, there is no concept of using articles like “a” or “the”, so it
is very likely that native Koreans will misuse or misplace articles in their English writing. If
there are enough data that represent how native Koreans write in English, we can build a model,
using language processing techniques, that captures how native Koreans write by focusing on
the unique patterns that distinguish them from other people who speak different languages. If
we can build these models for all languages, in theory, we will be able to identify authors’ native
languages just based on their writing style in English.

Although, as far as we know, a type of system that detects an author’s native language based
on their writing has not been a critical application in any field, but as the world becomes more
connected than ever, and as sharing information is gets continuously easier, being able to dis-
cover the native language of the author of a threatening message could be a significant tool for
capturing the people who are responsible for such the threat. For example, if a message de-
scribing a possible terrorist activity is intercepted, the FBI and the intelligence community can
use automatic language detecting capability to learn more about the threat, such as who may be
behind it.

The education field uses these language models in various ways. The ETS corporation has been
researching language models that can help them to build their own system for automatically
evaluating essays for TOEFL exams that are tailored to the student’s native language (Na Rae
Han, p.c.). Also, these language models can help ESL teachers to tailor their teaching meth-
ods to the students’ native language. For example, Korean native speakers and Spanish native
speakers will likely have different patterns of writing and different kinds of problems, and if
these language models provides this information to ESL teachers, they can help the students

1



more effectively.

Detecting the authors’ native language is relatively a new topic in the natural language process-
ing field. A little research has been done in this domain, but it is still far from accomplishing
the tasks described above. In this research, we wish to answer three questions: 1. Given essays
written by non-native speakers, how well can we detect the authors’ native languages using var-
ious natural language processing tools? 2. What is the strongest feature set and why does this
particular feature set work better than the other feature sets? 3. To what extend is the second
question dependent on the topics discussed in the corpus? This is a very important question
because if all Chinese essays were about technology, then the problem would just be detecting
what they wrote instead of how they write.

1.2 Organization
We have organized this thesis as follows: In Chapter 1, we provide the motivation for this
research. In Chapter 2, we provide 1) an overview of L1-L2 language transfer at the lexical
(vocabulary) and syntactic (sentence structure) levels, 2) an overview of feature sets, 3) gen-
eral natural language processing techniques as well as evaluation methods, and 4) prior related
works. In Chapter 3, we detail our technical approach, including a discussion of the corpora
used, the feature sets used, and the set-up of our experiments using this data along with the
classification methods. In Chapter 4, we present the results of our experiments as well as a
discussion of their significance. We begin by with discussing the results of the various feature
sets and comparing the performances of the maximum entropy and Naive Bayes classifications.
We then analyze character trigrams and study what drives their success by empirical analysis,
followed by a review of the performances of a lexical feature and character n-grams and their
relationships. Lastly, we discuss the role of topics in discriminating between the authors and
how the results change when topics are controlled. In Chapter 5, we conclude with a summary
of our work along with recommendations for future research.

1.3 Results
In this research, we used two corpora, International Corpus of Learner English (ICLE) and Cen-

tre for English Corpus Linguistics (CECL), written by speakers of eight different nationalities:
native English speakers as well as speakers of Bulgarian, Chinese, Czech, French, Japanese,
Russian, and Spanish to identify writers L1 [17]. Overall, we achieved higher than 80% ac-
curacy using either character trigrams or bag of words alone as a feature set when Maximum

2



Entropy was used as the machine learning technique. Syntactical feature sets such as POS
n-grams and distribution of transformation rules worked fairly well for detecting Chinese and
Japanese, but it performed less well with Slavic and Romance languages. Empirical analysis of
character trigrams also demonstrated that character trigrams only model lexical usage, leading
us to conclude that the best indication for detecting authors’ native languages is their lexical
usage. Furthermore, to find out to what extent lexical usage is dependent on the topics dis-
cussed in the corpus, we used the LDA model to show that the distribution of topics of each
language corpus is distinct from other distributions, which indicated that the topics are actually
doing most of the work. Then we used TF-IDF techniques to identify and extract the top con-
tent words, and as the content words are extracted, the performance of the lexical model and
the character n-grams dropped with respect to the size of words extracted. In other words, as
the topics were extracted, the performance dropped; this phenomenon supported our hypothesis
that the topics were doing the work.

3
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CHAPTER 2:
Prior and Related Work

2.1 Introduction
Learning to automatically determine a non-native speaker’s native language (L1) based on his
or her writing in English requires us to understand the phenomenon of how different native lan-
guages uniquely affect learning a second language (L2). Therefore, in this chapter, we present
concepts of L1-L2 language transfer that are relevant to detecting an author’s L1 using machine
learning techniques. Once this foundation is discussed, we define the feature sets that are used
in this research, followed by an overview of machine learning classification techniques. Then,
we discuss different types of evaluation methods, tools, and information retrieval techniques.
The chapter concludes by surveying the prior and related works that have been published.

2.2 Language Transfer
When non-native speakers learn English as their second language, in general, it is very difficult
for the learners to become fluent in English in both writing and speaking. Linguists have come
up with several different explanations as to why L2 acquisition is difficult and what influences
learning L2. One of the major influences in L2 acquisition is a learner’s L1. Each language has
a unique structure, and there is evidence that a learner’s L1 interferes with learning L2, which
is known as L1-L2 language transfer. Terence Odlin discusses the cross-linguistic influences in
language learning in reference [1], and some of his discussions that are related to this thesis will
be discussed in the next few sections.

2.2.1 Lexical Transfer
Odlin says that learners that have a large lexicon in common between L1 and L2 will adapt to
the L2 faster than learners with an L1 that does not share a large common lexicon with the L2,
and this phenomenon is known as lexical transfer. For example, the word justify can be written
as justifier in French, so French speakers will have an easier time learning what justify means
in English than Koreans, whose language has few lexical similarities with English. Lexical
transfer also contains morphological and syntactic information [1]. An example of morpholog-
ical transfer is the similar English and Spanish suffixes -ous and -oso in words scandalous and
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escandaloso. The similar suffixes will help Spanish speakers to identify cognates. Syntactic
transfer is discussed in the next section.

2.2.2 Syntax
Word Order
Most human languages have one of the following basic word orders: Verb-Subject-Object
(VSO), Subject-Verb-Object (SVO), or Subject-Object-Verb (SOV). Although the idea of whether
the L1’s basic word order influences the learning of an L2 is arguable, Odlin argues that if the
learner’s L1 word order is different from that of the L2, it will be likely to affect the L2 ac-
quisition [1]. For example, Philippine speakers of languages such as Ilocano and Tagalog,
which are SOV, showed patterns of SOV word orders in their English writing. Also, native
Japanese showed SOV patterns in their English writing, which is consistent to Japanese word
order. Odlin also says that the word order within the clause may influence the acquisition of
the L2. In English noun phrases (NP), articles and modifiers precede nouns (e.g., the beautiful
house). However, other languages have their own rules governing the positions of adjectives,
adverbs, and other word classes, and there is evidence that different placement of modifiers also
influences L2 acquisition [1]. For example, a survey of Hebrew speakers found that there is a
strong tendency for speakers to misplace adverbial elements, which follows the Hebrew writing
pattern, as seen in the following error: I like very much movies.

Relative Clauses
Some language structures place relative clauses on the right side of the head noun, which is
known as the Right Branching Direction (RBD); on the other hand, other language structures
place relative clauses on the left of the head noun, which is known as the Left Branching Direc-
tion (LBD). English is an example of a language that relies on RBD, and Japanese is an example
of LBD. Odlin used the example in Figure 2.1 to explain the difference between English and
Japanese in terms of placing relative clauses.

The cheese that the rat ate was rotten
Nezumi ga ttabeta cheese wa kusatte ita

rat ate cheese rotten was

Figure 2.1: Right Branching Direction vs Left Branching Direction

In Figure 2.1, the head noun is cheese and the relative clause that the rat ate, which modifies
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the head noun, is placed to the right of cheese; however, in Japanese, rat ate, which modifies
cheese, is placed before cheese. Odlin argues that if the L2 uses a different branching direction
than that of the learner’s L1, it becomes more difficult for that learner to adopt L2 than it is
for those learners whose L1 does not have that difference. Spanish uses RBD just as English
does, and the fact that Spanish learners of English have greater success repeating such sentences
than Japanese native speakers supports Odlin’s argument of how branch direction affects the L2
acquisition.

2.3 Features
We have discussed how learners’ L1 can influence their L2 acquisition because this concept
can be used to predict non-native speakers’ native language based on how they write in English.
However, how do we know which characteristics are most useful in predicting the L1? Choosing
the right set of characteristics (or “features,” as they are called in machine learning) is very
important, and this section presents a variety of useful features that are used in this research.

2.3.1 Lexical Features
Lexical features are the most straightforward features that simply exploit authors’ choice of the
words they used. There are many different types of lexical features, but in this research, we
discuss just two that are most relevant to this research.

Bag of Words
Among the lexical features, the “bag of words” is the most straightforward, since it simply
measures the frequency of each word regardless of how words are ordered. The bag of words
has been widely used in natural language processing problems such as authorship attribution
because it is simple and also captures authors’ preferences in terms of word usage. If a particular
author tends to use a particular word that is unique to that author, then the bag of words captures
that. For the same reason, a distribution of word frequency from a collection of documents
written by Chinese writers can be very different from the distribution of word frequency from
documents written by Bulgarian writers.

Function Words
Words can be divided into two classes: function words and content words. Content words are
words such as nouns, verbs, adjectives, and most adverbs [2]. Content words are subject to
change over time, and the choice of content words is heavily dependent on semantics. In con-
trast, function words are words such as articles, prepositions, pronouns, numbers, conjunctions,
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auxiliary verbs, and certain irregular forms. They have specific syntactic functions governed
by grammatical rules, and they are used to construct grammatical sentences out of individual
words. Also, some function words, such as articles and prepositions, carry important semantic
information, as do past and future tenses. Efstathios Stamatatos stated in [3] that the features
from function words are highly discriminative in the authorship attribution problems.

2.3.2 Syntactic Features
Syntactic features are used in authorship attribution problems because they capture authors’
unique syntactic patterns. Stamatatos states in [3] that authors tend to use similar syntactic
patterns unconsciously. Therefore, it is logical to consider syntactic features in the scope of
this research, and we discuss two different types of syntactic features that are relevant to this
research.

Distribution of Transformation Rules
Word order is one component of the syntactic structure of a sentence, or the rules by which
word combinations form acceptable sentences. Acceptable patterns of word combination can
be given by a tree structure, which specifies the relationships between words and phrases, as
shown in Figure 2.2. There is much debate in formal linguistics about the proper tree structures
for sentences, as well as much research in computational linguistic about how to generate parses
efficiently. In this work, we assume that constituent trees (Chomsky 1957) are in an appropriate
representation for syntactic features, and extract such representations using the Stanford Parser.
Once a sentence is parsed, syntactic rules, also known as transformation rules, are extracted
from the parsed tree. Then using the distribution of these transformation rules as a feature set
may capture an unique syntactic patterns from a group that is particular do that group.

Learning language is difficult
(ROOT

(S
(NP

(NP (NNP Learning))
(NP (DT a) (JJ new) (NN language)))

(VP (VBZ is)
(ADJP (JJ difficult)))

(. !)))

Figure 2.2: Stanford parser output
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For example, using the parsed tree in Figure 2.2, the following transformation rules are ex-
tracted: S → NPV P , NP → NPNP , and V P → ADJP . The first expression states that
a sentence (S) is constituted by a noun phrase (NP) followed by a verb phrase (VP), and the
second rule states that a noun phrase is constituted by a noun phrase followed by another noun
phrase. These transformation rules describe both what the syntactic class of each word is and
how the words are combined to form phrases or other structures.

Part-of-Speech (POS) N-Grams
Words in a sentence can be broken down into classes based on their syntactic and morphological
functions. These classes are known as parts of speech. The Penn Treebank tagset contains 36
POS tags and 12 other tags as shown in Table 2.1 [4]. The list of the Penn Tree POS tagset
is presented, since this tagset is used by the Stanford parser, which is the tool used for POS
tagging in this research.

1. CC Coordinating conjunction 25. TO to
2. CD Cardinal number 26. UH Interjection
3. DT Determiner 27. VB Verb, base form
4. EX Existential there 28. VBD Verb, past tense
5. FW Foreign word 29. VBG Verb, gerund / present participle
6. IN Preposition / subordinating conjunction 30. VBN Verb, past participle
7. JJ Adjective 31. VBP Verb, non-3rd ps. sing. present
8. JJR Adjective, comparative 32. VBZ Verb, 3rd ps. sing. present
9. JJS Adjective, superlative 33. WDT wh-determiner
10. LS List item marker 34. WP wh-pronoun
11. MD Modal 35. WP$ Possessive wh-pronoun
12. NN Noun, singular or mass 36. WRB wh-adverb
13. NNS Noun, plural 37. # Pound sign
14. NNP Proper noun, singular 38. $ Dollar sign
15. NNPS Proper noun, plural 39. . Sentence-final punctuation
16. PDT Predeterminer 40. , Comma
17. POS Possessive ending 41. : Colon, semi-colon
18. PRP Personal pronoun 42. ( Left bracket character
19. PP$ Possessive pronoun 43. ) Right bracket character
20. RB Adverb 44. ” Straight double quot
21. RBR Adverb, comparative 45. ’ Left open single quote
22. RBS Adverb, superlative 46. “ Left open double quote
23. RP Particle 47. ’ Right close single quote
24. SYM Symbol (mathematical or scientific) 48. ” Right close double quote

Table 2.1: The Penn Treebank POS tagset
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As we have seen above, Figure 2.2 also provides POS tags, which are located right next to the
words being tagged. For instance, Learning is tagged with NNP and the article a is tagged with
DT. These POS tags are extracted sequentially from the parsed trees to use POS n-grams as
feature sets in this research. A POS unigram is comprised of a single POS; a POS bigram is
a pairing of two adjacent POSs, and a POS trigram is three consecutive POSs. POS n-grams
have been used in other natural language processing (NLP) researches because they provide a
hint of the structural analysis of a sentence. For example, a typical standard English sentence
will generate high counts of POS tags for determiners follow by tags for nouns, but the same
sequence of POS tags may not appear as much from writings by Japanese since there is no
concept of articles in the Japanese language.

2.3.3 Character N-Grams
Character unigrams, bigrams and trigrams are just like POS unigrams, bigrams and trigrams
but with individual characters instead of POSs. Character N-grams have been widely used as
a feature set in many natural language processing studies because they can capture nuances
of style including lexical information, hints of contextual information, use of punctuation and
capitalization [3]. Additionally, such n-grams are noise tolerant. That is, when texts contain
grammatical errors or non-standard use of punctuation, the character n-gram is not affected.
For example, the words hello and helo would generate many common character trigrams, but
in a lexical-based representation, they would just be two different types. Character n-grams
also capture errors that could be used to discriminate between the different data groups. Large
n-grams are better at capturing lexical and contextual information, but the larger n-grams sub-
stantially increase the dimensionality. On the other hand, small (2 or 3) n-grams could capture
sub-word information but would not be adequate for representing the contextual information
[3].

2.4 Machine Learning Tools
Once a feature set is selected for inputs, the next logical step is to choose a machine learning
technique that will process these inputs. Although there are many different machine learning
techniques, this paper focuses on only two methods that are used in this research: Naive Bayes

and Maximum Entropy. The following sections will provide an overview of each technique.
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2.4.1 Naive Bayes
Naive Bayes is a simple probabilistic classifier based on Bayes’ Theorem with a strong inde-
pendence assumption that works in a supervised learning setting [5]. Bayes’ rule, Equation 2.1,
is used to predict the likelihood of a class C, given features F.

p(C|F1, ..., Fn) =
p(C)p(F1, ..., Fn|C)

p(F1, ..., Fn)
(2.1)

Since the numerator can be written as joint probability, as the number of features gets bigger,
the application of this method gets very expensive. This is where independence assumptions
come into play. Naive Bayes says that all features are independent of each other; therefore, the
numerator of Equation 2.1 can be re-written as Equation 2.2. Also, since p(F) in equation 2.1
is constant and does not affect the likelihood, Equation 2.2 omits the denominator in Equation
2.1.

p(C)
n∏
i=1

p(Fi|C) (2.2)

c∗ = argmaxP (c)
n∏
i=1

p(fi|c) (2.3)

The most probable class, c*, is returned by the function argmax, which returns the value from
the x-axis where the respective values from the y-axis are highest.

Smoothing
A probabilistic classifier such as Naive Bayes works very well, if the models are trained by the
complete data that represents the subject being classified; however, models are trained by the
particular data set and use those available data to compute the maximum likelihood estimation
(MLE), which is the most probable value based on the data available. Therefore, there is good
chance that the test data may have data that never appeared in the training data, which would
result zero probability. In order to avoid the zero-probability issue, smoothing techniques are
used. There are many smoothing algorithms, but only two smoothing techniques will be covered
in this section.
Laplace Smoothing
Laplace smoothing is the easiest smoothing technique to implement, but it does not work well
enough to be widely used in modern models. The unsmoothed version of maximum likelihood
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estimate of probability is normalized by dividing the seen feature counts, Ci, by the total number
of tokens, N, as shown in Equation 2.4 [5].

P (wi) = Ci/N (2.4)

The probability of unseen features would be zero, so Laplace smoothing adds one to each count
and increases the denominator by the total count of type T as follows:

PLaplace(Wi) =
Ci + 1

N + T
(2.5)

A problem with Laplace Smoothing is that it gives too much probability mass to unseen feature
counts, and consequently it is known to perform less well than the smoothing techniques in
practice; therefore, we introduce another smoothing technique called Good-Turing Smoothing
in the next section, which improves the Laplace smoothing technique’s shortfall, and the Good-
Turning smoothing technique is used in this research.

Good-Turing Smoothing

Instead of adding 1 to each count as Laplace Smoothing, the Good-Turing algorithm is based
on computing c and Nc, where c is a count of occurrences. For example, if the word the only
shows once in a set of data, the value for c will be 1, and we will use the term frequency c to
refer to the value of c. Nc is the number of counts that occur c times. If there are 5 different
features that are seen only once (c = 1), N1 would be 5. Nc is also known as the frequency of

frequency c [5].
Nc =

∑
x.count(x)=c

1 (2.6)

Good-Turing smoothing uses an intuition that the probability of a feature that occurred c times
in the training data can be estimated by using a count that occurred c+1 times. The probability of
unseen counts can be estimated by the probability of being seen just once. Using this intuition,
a new c value can be computed using Equation 2.7.

c∗ = (c+ 1)
Nc + 1

Nc

(2.7)

Using Equation 2.7, all the frequencies c are changed to a new count, c*, which is an adjusted
count less than the original c. The probability of unseen features, count zero N0, is computed
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using the following equation:

P ∗
GT (things with frequency zero in training) =

N1

N
(2.8)

Good-Turing causes a problem if the Nc+1 is zero. Thus, the values of Nc cannot used because
they causes a problem if the Nc+1 is zero. Therefore, the values of Nc need to be smoothed.
One way to resolve this issue is to replace all Nc values with new values computed using lin-
ear regression, as seen in Equation 2.9, which maps Nc values. More details are discussed in
reference [6].

log(Nc) = a+ b log(c) (2.9)

2.4.2 Maximum Entropy
The basic principle in maximum entropy is that when nothing is known, the probability distri-
bution should be as uniform as possible, and the distribution is updated as evidence becomes
known [7]. For example, considering an eight-way classification task, the probability of each
class is 0.125 when nothing is known, as shown in Figure 2.3.

p(Bulgarian) + p(Chinese) + p(Chinese) + p(Czech) + p(French) + p(Japanese) + p(Native)
+ p(Russian) + p(Spanish) = 1

p(Bulgarian) = 1/8
p(Chinese) = 1/8
p(Czech) = 1/8
p(French) = 1/8
p(Japanese) = 1/8
p(Native) = 1/8
p(Russian) = 1/8
p(Spanish) = 1/8

Figure 2.3: Probability distribution without constraint

However, if there is evidence that would increase the likelihood of a particular class, the prob-
ability distribution would be updated accordingly. Suppose there is a feature that occurs in
either Bulgarian or Czech 50% of time, we could apply this knowledge to update our model by
requiring that p satisfy two constraints:

There are many probabilities that satisfy the two constraints, but the reasonable choice of p is
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p(Bulgarian) + p(Czech) = 5/10

p(Bulgarian) + p(Chinese) + p(Chinese) + p(Czech) + p(French) + p(Japanese) + p(Native)
+ p(Russian) + p(Spanish) = 1

Figure 2.4: Probability distribution with a constraint

the most uniform, the distribution which allocates its probability as evenly as possible, subject
to the constraints as shown in Figure 2.5 [8].

p(Bulgarian) = 1/4
p(Chinese) = 1/4
p(Czech) = 1/12
p(French) = 1/12
p(Japanese) = 1/12
p(Native) = 1/12
p(Russian) = 1/12
p(Spanish) = 1/12

Figure 2.5: Probability distribution without constraint

Let us discuss the concept of Maximum Entropy mathematically. Maximum Entropy uses the
training data, D, which is a collection of contexts in documents d from all classes c, and uses
D to construct a classifier via the conditional distribution p to classify “class” c given some
“context” d based on the evidence from D. As shown above, the evidence allows us to set con-
straints that identify a set of feature functions that will be useful for classifying and measuring
its expected value. These constraints can be written in the form of functions of contexts in doc-
uments and the class fi(c, d). Maximum Entropy combines constraints by assigning weights to
the features using a exponential model:

p(a|b) = 1

Z(b)

k∏
j=1

α
fj(a,b)
j (2.10)
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Z(b) =
∑
a

k∏
j=1

α
fj(a,b)
j (2.11)

where Z(b) is a normalization factor to guarantee
∑

a p(a|b) = 1, and k is the number of fea-
tures. Each parameter αj corresponds to one feature fj and also known as “weight” for that
feature.

As discussed above, Maximum Entropy allocates probability distribution as evenly as possible,
so it computes the entropy of all conditional probabilities and finds the most unconstrained
distribution, p*, using the following equations, which is the log of the Equations 2.10 and 2.11:

H(p) = −
∑
a,b

p̃(b)p(a|b) log p(a|b) (2.12)

p∗ = argmaxpεP H(p) (2.13)

H(p) denotes the conditional entropy averaged over the training set, and p̃(b) is the observed
probability [9].

2.5 Evaluation
There are several different ways to measure results, and different measurements indicate success
in different aspects of a given problem. This section presents the evaluation metrics that were
used in this research.

2.5.1 Precision and Recall
Precision measures the correctness of the measurement by measuring the proportion of correctly
classified items from the total number of items that were classified as the targeted class.

In other words, using the data in Table 2.2 as an example, precision for Native measures how
many times a document was correctly classified as Native out of all cases where items were
classified as Native (summation of the Native column); using Table 2.2, Equation 2.14 shows
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Classified As
Actual Native Bulgarian Chinese Czech French Japanese Russian Spanish Total
Native 12.7 0.7 0.7 0.9 2.2 0.5 0.9 1.4 20.0
Bulgarian 0.1 14.0 0.4 0.7 1.3 0.4 1.9 1.2 20.0
Chinese 0.8 0.3 16.2 0.5 0.5 1.1 0.6 0.0 20.0
Czech 0.7 1.4 0.5 11.4 1.4 0.6 3.6 0.4 20.0
French 1.6 1.3 0.1 1.1 11.2 0.1 2.0 2.6 20.0
Japanese 0.8 0.3 1.3 1.1 0.6 15.1 0.4 0.4 20.0
Russian 0.5 1.8 0.4 2.7 1.9 0.6 10.5 1.6 20.0
Spanish 0.8 1.3 0.2 1.1 2.2 0.1 1.4 12.9 20.0
Total 18.0 21.1 19.8 19.5 21.3 18.5 21.3 20.5 160.0

Table 2.2: Confusion Matrix

the computation.

Precision =
12.7

12.7 + 0.1 + 0.8 + 0.7 + 1.6 + 0.8 + 0.5 + 0.8
= 0.705 (2.14)

Recall, on the other hand, measures the number of correctly classified items in relation to the
total number of items that were categorized as a class, whether they are correctly classified or
not. Again, using the data in Table 2.2 as an example, on average, Native classified 12.7 times
as a true positive out of a total of 20 (summation of the Native row), which is the number of
items that were classified as the Native class. Native recall is computed in Equation 2.15.

Recall =
12.7

20
= 0.635 (2.15)

2.5.2 Accuracy

Another metric is accuracy. Accuracy measures the number of correctly classified items out
of all cases. Another way to describe accuracy is measuring the degree of closeness from the
true value. Using the data from Table 2.2, the accuracy for Native is computed by dividing the
summation of data diagonally, from top left to bottom right, by the total number of cases, as
shown in Equation 2.16.

Accuracy =
12.7 + ...+ 12.9

160
= 0.65 (2.16)
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Precision cares only about how many of the items are correctly classified out of all items that
were classified as the targeted class, so it does not say anything about true items that were not
classified as true at all. In other words, precision just measures exactness. Recall, on the other
hand, measures the number of correctly classified items in relation to the total number of items
that were categorized as a class while disregarding items that were falsely classified as true. In
other words, recall just measures completeness. For example, let’s say out of 100 people, there
are 20 terrorists. If the FBI captures 16 terrorist suspects and 13 of them are actual terrorists
(true positive), then there are three innocent people who are captured (false positive), and there
are seven terrorists who are not captured (true negative). Figure 2.3 shows the confusion matrix
for this example. The precision of capturing terrorists is 0.8125. However, precision does not
say anything about the other seven terrorists who were not captured. On the other hand, recall
takes the terrorists who were not captured into account and computes as 0.65, but it does not
take into account the innocent people who were captured. Accuracy measures take into account
only people who are correctly classified out of an entire population while disregarding both
false positives and true negatives, and it is measured as 0.9. The accuracy is misleading, since it
seems to indicate that the FBI captured 90% of the terrorists, which was actually driven by the
larger number who were not captured and are not terrorists (true negatives).

Classified As
Actual Terrorist Not Terrorist

Terrorist 13 7
Not Terrorist 3 77

Total 16 84

Table 2.3: Example

2.5.3 F-Score
The f-score is another way to measure accuracy by weighing both precision and recall. The
f-score is the harmonic mean of recall and precision, which means it achieves a high value if
both precision and recall values are high. If either recall or precision is low, the f-score will also
be penalized. The f-score of the terrorist example is computed in 2.17.

F − score = 2

[ 1
recall

+ 1
precision

]
=

2
1

0.8125
+ 1

0.65

= 0.72 (2.17)
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The f-score is a measurement that solves issues other measurements suffer by evenly weighing
recall and precision and ignoring true negatives which influence the accuracy values.

2.6 Content Word Modeling
As part of an analysis, it is fair to investigate the contents in the corpus. A sub-corpus may
include a particular word that is unique to that subcorpus. For example, if a significant portion
of documents written by Chinese natives concern particular content words, those content words
may significantly contribute to discriminating between the sub-corpora, which is not a desirable
case in the nature of this research, since we want to exploit L1-L2 language transfer to build a
model instead of a content-based model. Therefore, we employed two content-modeling tools
to learn more about the documents in the corpus. The first tool we used is called Latent Dirichlet
Allocation (LDA). LDA has the ability to generate a document using distribution over topics,
in which each topic itself is a distribution over words. In other words, LDA can be used to test
if each document in a subcorpus has similar topic proportions that are different from the topic
proportions of other subcorpora. The second tool we used is called Term Frequency-Inverted
Document Frequency (TF-IDF). TF-IDF has the ability to discriminate between content words
that are unique to a document or subcorpus by assigning each word with a weight. If a particular
word is unique to that document, TF-IDF gives a high score, but he words such as function
words, which can be found in all documents, will receive very low scores. Therefore, TF-IDF
can be used to remove content bias issues in this research.

2.6.1 Latent Dirichlet Allocation (LDA)
LDA is a generative system that builds a statistical model that can generate documents. LDA
views each document as distribution over topics where a topic is modeled by a distribution over
words. LDA uses these distributions to generate new documents using actual words. Let n be
the number of words in a document. For each word slot, LDA selects a topic according to the
topic distribution (θd) and the assigned topic is called z where z is equivalent to a βk for some
k. Since each topic is actually a distribution of words (βk), each slot (z) will be filled by a word
(wi) in respect to βk. Figure 2.6 graphically shows the relationship between these variables.
To indicate that the system knows what wi are, wi are shaded, since words in documents are
given. Therefore, distribution over words (βk) and distribution over topics (θd) are not shaded,
and they care called hidden variables. The variable α that points to θd in Figure 2.6 indicates
that α actually generates θ. Although is it not shown in Figure 2.6, there is a variable called η
which generates β.
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Figure 2.6: A graphical model representation of the latent Dirichlet allocation (LDA).

Figure 2.7 shows a simple example of how the LDA model generates a document when an input
document consists of five words and assigned topics are two.

d1 = 5 words in this document
k = 2 (there are 2 topics)
θd1 = { 0.8 (β1) , 0.2 (β2) }, distribution over topics in d1
β1 = {0.25w1 , 0.25w2 , 0.2523 , 0.25w4} β2 = {0.9w1 , 0.1w2}

1) For d1, there are 5 slots , where each slot will be assigned with a topic zi
2) d1 becomes z1 z2 z3 z4 z5
3) Given the θd1 , d1 likely to have β1 β1 β1 β1 β2
4) Since both β1 and β2 are given, word slots in d1 will be replaced with the actual words
with respect to β as follows: w1(β1) w2(β1) w3(β1) w4(β1) w1(β2)

5) LDA will repeat the steps 1 through 4 until probabilities of selected words in each slot
converge.

Figure 2.7: LDA example

2.6.2 Term Frequency-Inverted Document Frequency (TF-IDF)
As discussed above, the ideal corpus for this type of thesis is a content-free corpus; therefore,
we used the TF-IDF technique to identify the content words. To state more accurately, TF-IDF
does not know whether a word is a content word or not, but it detects all words that are unique to
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a particular class. For example, if the word Japan shows up frequently in writings by Japanese,
but rarely in other languages, TF-IDF weighs highly on the word Japan. The first term TF refers
to the frequency of a term in a document, so if a term appears frequently in a document, the
TF-IDF value will be high. On the other hand, the second term, IDF, refers to how frequently
the same term appears in other documents. If the same term appears less frequently in other
documents, than the value of IDF will be higher than when the term appears frequently in other
documents as well. Equation 2.18 describes TF-IDF mathematically:

tfidft = ft,d × log

(
D

ft,D

)
(2.18)

where ft,d is the frequency of term t in document d , ft,D is the number of documents in which
t appears, and D is the total number of documents in the collection [5] [10]. Therefore, the
weight of the term t ε d will be maximal if the term t is common in d but not common in other
documents. If the term t is common in d but also common in other documents, log

(
D
ft,D

)
will

bring down the overall weights.

2.7 Tools
2.7.1 NPSML Tools
The Naval Postgraduate School (NPS) has built a set of in-house tools to facilitate running
machine learning tools in its natural language processing lab. The tools are set up so that once
the input is in the NPSML format, it can be converted to appropriate input format for all third-
party machine learning tools. These tools are all available to the public via the Internet [11].

2.7.2 Maximum Entropy (GA) Optimization Package
The NPSML format can be easily converted to the Maximum Entropy (GA) Model (Megam)
optimization package file format. Megam, the most used machine learning tool in this research,
is publicly available via the Internet [12].

2.7.3 Stanford Parser
The Stanford Parser is used for parsing and POS tagging. The Stanford Parser takes a file input
and produces parsed trees, POS tags, and dependency types from each sentence. The Stanford
Parser package is also publicly available via the Internet [13].

20



2.7.4 LDA
We used the LDA open source tool written by David M. Blei in this research [14]. The NPSML
format can be converted to the LDA input format via a tool that was built in the NPS NLP lab.
The feature set for NPSML format must be the bag of words.

2.8 Prior Work
We have discussed how the L1-L2 language transfer can influence non-native speakers’ writ-
ing style in English and have also discussed various types of stylometric feature sets that can
discriminate the writing of one person from that of others. A lot of these stylometric features
have been successfully used in authorship attribution problems, and Stamatatos describes why
some of the widely used feature sets are performing well in reference [3]. The remainder of this
section introduces the past research that is related to this research, reviews what feature sets are
used, and observes how well some of the feature sets work.

2.8.1 Koppel
To the best of our knowledge, the first published work on automatically detecting an author’s
native language was done by Moshe Koppel in 2005. Koppel tried to identify an anonymous
author’s native language by exploring stylistic idiosyncrasies in the author’s writing [15]. Kop-
pel used the data from International Corpus of Learner English version 1, which is the previous
version of the same data that were used in this research. Koppel considered sub-corpora con-
tributed from Czech, French, Bulgarian, Russian, and Spanish. In each sub-corpus, 258 essays
were used, and the length of each essay was between 579 to 846 words.

Koppel used a variety of stylistic feature sets such as function words, letter n-grams, and er-
rors and idiosyncrasies [15].

1. Function words: 400 specific function words were chosen, but Koppel did not list which
words were used.

2. Letter n-grams: 200 specific n-grams were chosen.

3. Errors and Idiosyncrasies: Koppel considered a range of spelling errors, neologisms,
and Part-Of-Speech (POS) bigrams and narrowed it down to 185 error types and 250 rare
POS bigrams as the feature sets.
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Koppel used multi-class linear support vector machines (SVM) as the classification tool in his
research, and with the chosen feature sets, he obtained 80.2% total accuracy classifying authors’
native languages correctly, as shown in figure 2.8 [15] . The confusion matrix is shown in table
2.4. Koppel noticed that some features appeared more often in one class than in other classes
[15]. Some of his observations are as follows:

• The POS pair most-ADVERB appeared more frequently in the Bulgarian corpus than in
the other sub-corpora.

• A relatively large number of incorrect usages of double consonants was found in the
Spanish corpus. Some specific errors were exclusively from the Spanish corpus, which
could have been derived from the orthography of Spanish.

• Particular words, such as indeed and Mr. with a period, were frequently used in the French
corpus.

• The Russian corpus was more prone to use the word over and the POS pair NUMBER

more.

• The number of times the function word the was used per 1000 words: Czech 47, Russian
50.1, Bulgarian 52.3, French 63.9, and Spanish 61.4.

Classified As
Actual Czech French Bulgarian Russian Spanish
Czech 209 1 18 20 10
French 9 219 13 12 5
Bulgarian 14 8 211 18 7
Russian 24 8 24 194 8
Spanish 16 10 10 7 215

Table 2.4: Confusion Matrix

Koppel achieved overall 80% accuracy determining the native language of the authors. He
assumed the proficiency of the writers to be consistent throughout the data and normalized the
features by the lengths of the essays; however, he discovered that the Spanish corpus was more
prone to errors than the Bulgarian. In order to build a more accurate model, he recommended
that the features be normalized by the error frequency from the entire corpus.
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Figure 2.8: Accuracy (y-axis) on ten-fold cross-validation using various feature sets (x-axis)
without (diagonal lines) and with (white) errors.

2.8.2 Rappoport

Ari Rappoport re-investigated Koppel’s research on determining authors’ native languages us-
ing character bi-grams as the only feature set. First, Rappoport chose the 200 most frequently
used bi-grams in the whole corpus and used that as the feature set to achieve 65.6% accuracy
with a standard deviation of 3.99 [12]. He then went further by choosing only the bi-grams that
appeared at least 20 times in the whole corpus, or 84 bi-grams, and used only those bigrams to
achieve a classification accuracy of 61.38%. Since bi-gram frequencies can be subject to con-
tent bias, Rappoport employed a statistical measure to evaluate and remove all dominant words
in the sub-corpora and then repeated the classification experiments. The result was that the clas-
sification accuracy is essentially the same (it dropped only 2%). Rappoport also experimented
with removing all the function words, to rule out the effect of the function words, and achieved
62.92% accuracy. Lastly, he replaced two of the sub-corpora, French and Spanish, with Dutch
and Italian. With the new data set, Rappoport obtained 64.66% accuracy, essentially the same as
in the original data set. Rappoport concluded that character bigrams may be capturing language
transfer effects at the level of basic sounds and short sound sequences [10].
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2.8.3 Wong
Sze-Meng Jojo Wong used Koppel’s research on native language identification as a basis and in-
vestigated further by incorporating syntactic errors as an additional feature [16]. Wong used the
latter version of the data set Koppel used with two additional sub-corpora: Japanese and Chi-
nese. Wong selected three types of syntactic errors that non-native speakers were more prone
to make as the features. The three selected syntactic error types are subject-verb agreement,
noun-number disagreement, and misuse of determiners.

Wong conducted two different investigations using these syntactic features [16]. First, Wong
observed the frequency of misuse of the three types of syntactic errors by all seven L1s and
performed the classification tasks using only three syntactic errors as the feature sets. As shown
in Table 2.5, the baseline is 14.29%, given that there are seven native languages with an equal
number of data sets, and the classification accuracies are 5% higher with before-tuning and
10% higher with after-tuning. Wong used libSVM as the machine learning tool and a tool
called Queequeg as the grammar checker.

Baseline Presence Relative frequency Relative frequency
absence (before tuning) (after tuning)

14.29% 15.43% 19.43% 24.57%
(25/175) (27/175) (34/175) (43/175)

Table 2.5: Classification accuracy for error features

In the second part of Wong’s investigation, she replicated Koppel’s work and combined the
replicated version of his work with the three syntactic features to investigate if integrating the
three syntactic features improved the accuracy of 80%, which Koppel had achieved in his re-
search. The classification results of these combined features are shown in Table 2.6. The best
classification accuracy was achieved when function words and POS n-grams were used as the
feature sets. Also, adding character n-grams as a feature set did not improve the accuracy.
Wong concluded that the three syntactic errors did not improve the overall accuracy because
either not enough error types were used or the syntactic errors were not a good indicator for
detecting an author’s native language.

2.8.4 Summary of Prior Works
Koppel used four different types of feature sets to achieve total 80% accuracy when classifying
the authors’ native languages. Then Wong used Koppel’s work as a baseline and investigated
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Combinations of features prior tuning prior tuning after tuning after tuning
(- errors) (+ errors) (- errors) (+ errors)

Function words + 58.29% 58.29% 64.57% 64.57%
character n-grams (102/175) (102/175) (113/175) (113/175)
Function words + 73.71% 73.71% 73.71% 73.71%

POS n-grams (129/175) (129/175) (129/175) (129/175)
Character n-grams 63.43% 63.43% 66.29% 66.29%

POS n-grams (111/175) (111/175) (116/175) (116/175)
Function words + 72.57% 72.57% 73.71% 73.71%

char n-grams + POS n-grams (127/175) (127/175) (129/175) (129/175)

Table 2.6: Classification accuracy for all combinations of lexical features

further whether using three different types of grammatical errors would improve the classifica-
tion performance. Wong selected the following syntactic error types: subject-verb agreement,
noun-number disagreement, and misuse of determiners. Wong’s research showed that using
these grammatical error types did not improve the performance either because grammatical
error types are not a good indicator or because not enough error types were used. Lastly, Rap-
poport investigated why character bi-grams alone work well and concluded that they may be
capturing language transfer effects at the level of basic sounds and short sound sequences.

2.9 Conclusion
In this chapter, we discussed concepts that are relevant to this research. We discussed some
of the factors causing L1-L2 language transfer, and then discussed different types of features
that serve as inputs to the two described machine learning algorithms for classification. We
also discussed different metrics needed to evaluate the hypothesis. Lastly, we discussed prior
research. We now have all the concepts and tools to design experiments to detect authors’ L1
from their writing style.
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CHAPTER 3:
Technical Approach

3.1 Introduction
In this chapter, the details of the experimentation setup are described. First, we describe the
details of the corpus and how the data in the corpus are converted to a usable format for ma-
chine learning tools. Then, we continue with a discussion about the features selected for the
experiments. Lastly, we present the details of the experimental setup for each machine learning
technique.

3.2 Data Description
The data used in this research are from a corpus of academic (mainly argumentative) essays
written in English by non-native speakers compiled by the project known as the International

Corpus of Learner English (ICLE). The length ranges mostly in from 500 to 1,000 words, and
the authors are adults who are learning English as a foreign language but not necessarily as their
second language [17]. The corpus has 16 different subcorpora categorized by the authors’ native
language. In this research, seven subcorpora are chosen: Bulgarian, Chinese, Czech, French,

Japanese, Russian, and Spanish. In addition to the data from the ICLE, a corpus called LOC-
NESS, which consists of native writings compiled by the Centre for English Corpus Linguistics

(CECL) is also used as the eighth subcorpus. From each subcorpus, we selected 200 essays,
each similar in size in terms of the number of words to maintain uniform size distribution of
essays and eliminate the need for normalization. Tables 3.1 and 3.2 show the details of the size
of each subcorpus in various ways. In general, essays in the Czech corpus tend to be longer
than the essays in Chinese or Japanese corpora. Therefore, as Table 3.1 shows, the size of each
subcorpus varies. For example, selecting the smallest size essays from the Czech corpus still
makes the average Czech document size larger than the average document sizes of Chinese and
Japanese. However, we believe that these size differences are not significant enough to affect
the experiments, and therefore, we performed the whole experiment without normalization.
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Class Total number of words Average number of words per essay Total number of types
Bulgarian 145,412 727 9,581
Chinese 127,431 637 7,101
Czech 151,215 756 9,821
French 138,735 693 9,503

Japanese 120,152 600 8,047
Native 137,148 685 11,408

Russian 134,749 673 10,221
Spanish 129,951 649 10,291

Total - - 32,277

Table 3.1: Data size

Class Total number of sentences Average number of words per sentence
Bulgarian 7,206 20.2
Chinese 7,228 17.6
Czech 9,517 15.9
French 7,093 19.6

Japanese 8,590 14.0
Native 6,629 20.7

Russian 7,644 17.6
Spanish 5,858 22.2

Table 3.2: Number of sentences vs. average number of words per sentence

3.3 Raw Data to Usable Data
In the data from ICLE, each text file holds a written essay with a file name that reflects the
author’s native language and a unique number. Each essay originally had a unique identifier
enclosed in brackets that held information on the author’s native language, the institution the
author belonged to when the essay was written, and a unique number. Since this information
was inserted by a third person, it was removed. However, to preserve this information, the file
name of each essay was named exactly as the unique identifier of that essay. Also, since all
references were replaced by <R> , and all quotes were replaced by <*> , we removed all
such indicators. Since this research was focused on the writings of non-native speakers, we
decided to remove all special characters that were not written by the author.

Native writings from the LOCNESS corpus were compiled into a single file, but each essay
was marked with the same type of identifier as the one we saw in the ICLE corpus. Therefore,
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each native essay was saved as an individual file with a unique name. To maintain consistency,
the file was named exactly like the unique identifier of that essay, as explained above. Also, as
above, the native data had <R> and <*> as well, which were removed.

In addition to removing unnecessary content, all British spellings were replaced by U.S. spellings.
We were able to identify a significant number of students who studied in Hong Kong and used
British spelling on their essays. Therefore, to avoid British spelling being used as a discrim-
inator, all British spelling was changed to U.S. spelling. We found a comprehensive list of
words that were spelled differently in British in reference [18], and we used the list to replace
all British spellings with U.S. spelling in the entire corpus.

3.4 Part-of-Speech (POS) Tagging
Once all the data were converted to usable data, we used the Stanford parser as a tool to generate
part-of-speech (POS) tagging and phrase structure trees. The Stanford parser takes a text file as
input as shown in Figure 3.1 and generates phrase structure trees with POS tags as an output.

./lexparser.csh inputFile.txt

Figure 3.1: Stanford parser command

For example, if the input file has a sentence ”Learning a new language is difficult!”, the Stan-
ford parser will generate the output as shown in Figure 3.2. If the input file has more than two
sentences, the Stanford parser will automatically break them and produce an output per sen-
tence. We parsed all 1,600 data files and piped the outputs into 1,600 new parsed files. Each
parsed file was named by concatenating the actual data file name with the word parsed to easily
keep track of all parsed files.

(ROOT
(S

(NP
(NP (NNP Learning))
(NP (DT a) (JJ new) (NN language)))

(VP (VBZ is)
(ADJP (JJ difficult)))

(. !)))

Figure 3.2: Stanford parser output
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3.5 Feature Extraction
As noted in the previous chapters, Koppel used character n-grams, part-of-speech n-grams,
function words, and spelling errors as the feature sets to achieve 80% accuracy [15]. Therefore,
we used Koppel’s feature sets, with the exception of spelling errors, as a baseline to test our
eight subcorpora. We also integrated the distribution of the transformation rule as a feature set
to the baseline to test if the frequency of syntactic rules helps the overall performance. The list
below shows the feature sets that were used at the beginning of the research.

• Character bigrams

• Character trigrams

• Character bigrams and character trigrams

• Function words (used a 456 function word list that was compiled independently)

• The top 200 POS bigrams (the top 200 most frequently-used bigram list was compiled
from the NLTK Brown corpus)

• The top 200 POS trigrams (the top 200 most frequently-used trigram list was compiled
from the NLTK Brown corpus)

• The top 200 POS bigrams & trigrams

• Function words, character bigrams and character trigrams

• Function words, character bigrams, character trigrams, the top 200 POS bigrams, and the
top 200 POS trigrams

• Function words, character bigrams, character trigram, the top 200 POS bigram, the top
200 POS trigrams, and transformation rules

Rappoport states that a character bigram itself is an effective discriminator, so we tried with the
higher character n-grams to test how output changed as the n-grams increased [10]. We also
tried different variations of character trigrams as shown in the list below to test whether the
performance of character trigrams’ is affected by different features. For example, if running
a character trigram on the corpus from which the punctuation has been extracted results in a
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significantly worse performance than running a character trigram on the original corpus, we
can learn that punctuation provides a significant indication to each calss and can be captured
by a character trigram. The list below shows the list of the variations of character-trigrams we
conducted.

• Character bigrams and up to character 7grams with case changed to upper case

• Character trigrams with no case change and extracted all trigrams that included spaces

• Character trigrams with no case change and no space (removed all spaces from the texts
by combining each word with its adjacent words and then extracted character trigrams
from those modified texts)

• Character trigrams with no case change, no space, and stemmed (used porter stemming
to stem all words)

• Character trigrams with no case change and extracted all punctuation

We used the TF-IDF algorithm to identify content words as discussed in section 2.6.2 and re-
built multiple versions of the corpora. The new corpora were differentiated by the number
of content word types that were extracted, and Table 3.3 lists the number of types that were
extracted in respect to the different thresholds. In other words, when the threshold for TF-IDF
was set to 100, 245 word types were assigned with weights higher than 100, and these 245 word
types were extracted to form a different corpus that has 245 fewer word types. Then the feature
sets that are listed below were used on this new corpus. This approach allowed us to examine
how performance changes as more content words, as identified by the TF-IDF, are extracted
from the corpus.

• LDA coefficients on all different versions of corpora

• Character trigrams, upper case, no space, and stemmed on all different versions of corpora

• Character trigrams, upper case, no space, stemmed, and extracted all function words on
all different versions of corpora

• Character 4grams, upper case, no space, and stemmed on all different versions of corpora

• Bag of words on all different versions of corpora
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Threshold Number of word types above the threshold
100 245
90 294
80 386
70 518
60 681
50 925
40 1292
30 1884
25 2358
20 3007
15 4052
10 6069

Table 3.3: Data size

3.6 NPSML Format
For each feature set, the feature was extracted from the eight subcorpora, and then the extracted
data was formed into the NPSML format as shown in Figure 3.3. The first key field is the
essay’s class name and a unique number that distinguishes one essay from other essays within
the class. For example, we named the Chinese essays from Chinese 1 to Chinese 200 as their
unique ID. The second field, weight, is set at 1.0 for all cases. The class field is where we put
the class name. The rest of the fields are feature labels and their counts.

key weight class feature label 1 feature value 1 feature label 2 feature value 2 ...

Figure 3.3: Feature extraction file format

Figure 3.4 shows a part of the NPSML format using character trigrams as the feature set. For
every feature set, the respective features were extracted from the entire corpus and put into a
form such as the NPSML format.

Bulgarian 1 1.0 Bulgarian all 3 rol 1 rom 3 ron 1 ali 2 us 3 osp 1 sca 1 lly 1 esc 1 un 2 ...

Figure 3.4: Feature extraction file example for character trigrams
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3.7 Initial Cross Validation
Once the features were extracted and converted to an NPSML format, the next step was to
divide the data into test and training sets. The NPSML format was internally shuffled prior to
creating test and training sets. We used ten-fold cross validation, which means ten different
training and test sets were created by segmenting the data into ten different subsets. Then nine
of these subsets were assigned as training data and the remaining subset was assigned as test
data. Since there were ten subsets, ten different pairs of training and test data were formed.
In creating models for each machine learning technique, training sets were used to train each
model. Then, each model was tested with the test data.

3.8 Classification Tasks
Since our problem entails predicting an author’s native language among the eight different
classes, we performed multi-class classification tasks. After ten fold cross validation gener-
ated pairs of ten training and testing data, we used the training data to build a model using
machine learning techniques, and when a model was built, we used the testing data, the pair
of training data that were used to build the model, to perform the classification task. Then we
used the result to build a confusion matrix. When all ten confusion matrices were generated, we
averaged them out to create one final confusion matrix for each feature set as shown in Table
3.4.

Classified As
Actual Native Bulgarian Chinese Czech French Japanese Russian Spanish Total
Native 12.7 0.7 0.7 0.9 2.2 0.5 0.9 1.4 20.0
Bulgarian 0.1 14.0 0.4 0.7 1.3 0.4 1.9 1.2 20.0
Chinese 0.8 0.3 16.2 0.5 0.5 1.1 0.6 0.0 20.0
Czech 0.7 1.4 0.5 11.4 1.4 0.6 3.6 0.4 20.0
French 1.6 1.3 0.1 1.1 11.2 0.1 2.0 2.6 20.0
Japanese 0.8 0.3 1.3 1.1 0.6 15.1 0.4 0.4 20.0
Russian 0.5 1.8 0.4 2.7 1.9 0.6 10.5 1.6 20.0
Spanish 0.8 1.3 0.2 1.1 2.2 0.1 1.4 12.9 20.0
Total 18.0 21.1 19.8 19.5 21.3 18.5 21.3 20.5 160.0

Table 3.4: Confusion Matrix

3.8.1 Naive Bayes
Naive Bayes experiments were conducted using a Naive Bayes package developed in the Naval
Postgraduate School (NPS) natural language processing lab. The learning portion of this pack-
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age uses an NPSML file as input and generates a model. The learning portion implemented the
Good-Turing smoothing technique. The classification portion of this package used the model
generated from the learning process to classify testing file, which is also NPSML file. The re-
sulting output was a two column test file listing the key, the first column in NPSML format, and
the predicted class.

3.8.2 Maximum Entropy
We used the Maximum Entropy GA Model (MegaM) Optimization package developed at the
University of Utah to conduct experiments using maximum entropy [12]. NPSML files can be
converted to MegaM format by removing the first two columns (key and weight). The learning
portion of this package used a MegaM file as input and generated a model which by default
was written to the standard output. The standard output was then piped to a file. The resulting
model was a two column text file listing features and their weights. When running the learning
portion of these experiments, the following command was used:

megam -quiet -nc -fvals -repeat 100 multiclass train.i > weights.i, where i is an index

Figure 3.5: MegaM command

The -quiet flag suppresses output to the screen. The -nc flag indicates that the names of classes
are in text. The -fvals flag signifies the use of named features as opposed to an integer index to a
feature list. The -repeat flag ensures that iterative improvement is attempted at least 100 times;
this is needed to prevent the algorithm from stopping prior to convergence. The multiclass flag
indicates what type of model to build.

3.9 LDA
We used the LDA open source code developed by David M. Blei to run LDA experiments. NPS
developed an in-house converter that takes the NPSML format and converts it to the LDA input
format. Once the LDA input format is prepared, the below command is used to generate topic
models via LDA.

lda est 1.0 50 settings.txt mlformat.txt.lda random k 50

Figure 3.6: LDA command
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The numeric value 1.0 indicates an initial alpha value and the value 50 indicates the number of
topics, which is assigned by users. Settings.txt is the name of a file that holds the values of the
parameters, and mlformat.txt.lda is the name of input file. The term random indicates that the
topic will be initialized randomly. Lastly, k 50 is just a name of folder where all the models
will be saved.

3.10 Conclusion
This chapter has presented a description of the data, the process associated with converting
the data to usable data for machine learning, the features selected for the experiments, and the
details of the experimental sets for each learning technique.
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CHAPTER 4:
Results and Analysis

4.1 Introduction
In this chapter, we present the results of our experiments as well as a discussion of their signif-
icance. We will first begin by discussing the results of the various feature sets and comparing
the performances of maximum entropy and Naive Bayes classifications. We will then analyze
the character trigrams and study what drives their success by empirical analysis, followed by a
review of the performance of a particular lexical feature and character n-grams and their rela-
tionships. Lastly, we will discuss the role of topics in discriminating between authors and how
the results change when topics are controlled.

4.2 Initial Classification Results
As discussed in Chapters 2 and 3, we used Koppel’s feature sets, with the exception of spelling
errors, as our baseline; Table 4.1 presents the results when maximum entropy was used as a
classification method, and the results are plotted in graphs as shown in Figure 4.1.

Machine Learning Tool: Megam
Features Accuracy Native Bulgarian Chinese Czech French Japanese Russian Spanish
CB 0.715 0.728 0.711 0.854 0.668 0.652 0.848 0.581 0.689
CT 0.813 0.859 0.814 0.919 0.762 0.771 0.900 0.705 0.783
CBT 0.791 0.829 0.793 0.912 0.742 0.750 0.897 0.668 0.750
FW 0.651 0.641 0.636 0.807 0.606 0.579 0.765 0.544 0.639
POSB 0.530 0.513 0.451 0.800 0.446 0.507 0.694 0.359 0.461
POST 0.456 0.423 0.4189 0.744 0.385 0.4183 0.565 0.289 0.412
POSBT 0.547 0.514 0.473 0.824 0.435 0.490 0.727 0.402 0.526
FW CBT 0.796 0.835 0.802 0.915 0.741 0.755 0.900 0.665 0.769
FW A BT 0.801 0.829 0.797 0.914 0.740 0.773 0.894 0.697 0.774
CB Character bigrams
CT Character trigrams
CBT Character bigrams & trigrams
FW Function words
POSB Top 200 POS bigrams
POST Top 200 POS trigrams
POSBT Top 200 POS bigrams & trigrams
FW CBT Function words and character bigrams & trigrams
FW A BT Function words and character bigrams & trigrams and top 200 POS bigrams & trigrams

Table 4.1: Accuracy and f-scores across the feature sets
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Figure 4.1: Accuracies and f-scores across the feature sets

The highest value from each row is italicized, and the highest value from each column is in
bold. As discussed in Chapter 3, the top 200 frequently-used POS bigrams and trigrams were
compiled from the NLTK Brown corpus, and the list of 456 function words was compiled from
independent sources. The following are some of our observations (see Appendix A for full
confusion matrices):

• Koppel achieved 80.2% overall accuracy using the following feature sets: function words,
character bigrams and trigrams, POS bigrams and trigrams, and spelling errors. We also
achieved 80.1% overall accuracy using the same feature sets with the exception of spelling
errors.

• Both character n-grams outperformed the other feature sets, and the character trigrams
alone outperformed the results achieved from feature sets that combined character n-
grams, function words, and POS n-grams. As discussed in Chapter 2, character n-grams
capture nuances of style including lexical information, hints of contextual information,
and use of punctuation and capitalization; we will show what is driving the character
trigrams’ high results in a later section.

• Function words are the only lexical level feature used in the initial experiments. Consid-
ering the dimension size which is much smaller than the character n-grams’ dimension
size, function words alone achieved 65% overall accuracy, which is higher than the per-
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formance of POS n-grams. As we discussed in Chapter 2, some function words, such
as prepositions, have specific syntactic functions governed by grammatical rules, while
other function words, such as determiners, carry important semantic information. There-
fore, it is reasonable to hypothesize that L1-L2 language transfer is a significant factor
that drives the function words’ performance. Table 4.2 shows the list of some of the most
distinctive function words, which was determined by computing the entropy of each word
and extracting the words with low entropies. Entropy measures randomness; in this case,
entropy is high if the distribution of word usage is uniform and low otherwise. As ex-
pected, present-tense be verbs such as am, is, and are have high entropies and are not
listed in Table 4.2, but we can also see that many pronouns and past-tense be verbs such
as I, you, she, were, and was all made it to the low entropy list.

• Part of Speech (POS) bigrams and trigrams did not perform as well as the others. POS n-
grams are syntactic features that capture authors’ unique syntactic patterns. As discussed
in Chapter 2, different languages have different word orders and use different branching
directions. Although the overall performance of POS n-grams was not very good com-
pared to the other results, the fact that Chinese and Japanese achieved high f-scores could
indicate that their unique syntactic patterns are caused by their languages’ grammatical
distance being farther from the rest of the group. Additionally, we also used another syn-
tactic feature called distribution of transformation rules, but it turned out that when this
feature set was used alone, it performed poorly and when it was combined to the other
feature sets, it dragged down the over-all performance. The result for the distribution of
transformation rules is shown in Appendix C.

• The results of the initial experiments demonstrate that the Chinese f-scores outperform
all other languages in all feature sets, and Chinese f-scores tend to fluctuate less across
the different feature sets.
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Function words with low entropies
Function words Bulgarian Chinese Czech French Japanese Native Russian Spanish
ACCORDING 58 248 54 56 43 35 40 47
ALL 709 268 639 632 289 430 657 593
AMOUNT 26 75 32 20 10 57 27 20
ANYTHING 52 13 83 16 23 35 40 34
EVERYBODY 52 5 95 61 13 10 34 68
EVERYTHING 110 10 158 73 23 40 121 68
FURTHER 37 22 9 44 10 38 22 9
FURTHERMORE 26 21 2 11 9 7 1 19
HE 238 97 830 630 384 632 488 310
HER 68 31 281 206 196 271 161 112
HIM 47 10 145 126 71 92 133 46
HIMSELF 19 7 37 50 7 35 39 15
HIS 228 55 560 413 186 479 403 209
HOWEVER 193 295 66 94 177 250 43 95
I 1000 470 1224 480 2367 542 942 547
INDEED 26 10 2 116 9 26 7 9
MAY 173 562 119 196 204 208 179 103
MOREOVER 54 64 10 84 32 4 18 39
MY 292 108 273 76 538 124 162 147
NOWADAYS 114 46 56 90 16 17 96 144
OUR 905 212 762 444 335 255 717 517
REAL 210 39 142 116 25 42 123 102
SHE 66 29 308 302 248 215 149 147
SOMETHING 212 33 190 71 77 73 144 154
UPON 32 3 12 15 10 40 39 12
VARIOUS 42 17 67 24 48 30 32 3
WAS 288 138 731 359 577 680 479 441
WE 54 10 42 154 4 8 37 98
WERE 180 69 339 221 196 356 262 278
WHAT 594 138 487 405 334 305 378 403
YOU 715 187 514 370 440 279 429 354
YOUR 191 26 181 66 74 72 118 78

Table 4.2: Most distinctive function words
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4.3 Comparison Between Maximum Entropy and Naive Bayes
Using the exact same feature sets, we repeated the experiments with Naive Bayes (Good Tur-
ing smoothing technique) as the classification method. Table 4.3 shows the results, which are
plotted into a graph in Figure 4.2. As the graph clearly shows, Naive Bayes performs poorly
with POS n-grams, not to mention French f-score almost hits the bottom; however, Naive Bayes
performs well for function words.

Machine Learning Tool: Naive Bayes
Features Accuracy Native Bulgarian Chinese Czech French Japanese Russian Spanish
CB 0.607 0.595 0.637 0.830 0.515 0.436 0.8144 0.522 0.525
CT 0.550 0.542 0.608 0.819 0.418 0.426 0.761 0.420 0.396
CBT 0.563 0.548 0.615 0.824 0.429 0.411 0.775 0.461 0.441
FW 0.619 0.620 0.656 0.826 0.506 0.477 0.836 0.4908 0.562
POSB 0.303 0.340 0.404 0.329 0.297 0.009 0.483 0.038 0.0853
POST 0.341 0.384 0.389 0.589 0.219 0.090 0.449 0.222 0.090
POSBT 0.360 0.369 0.444 0.592 0.303 0.047 0.535 0.181 0.142
FW CBT 0.579 0.593 0.623 0.830 0.470 0.454 0.789 0.438 0.443
FW A BT 0.608 0.598 0.486 0.837 0.620 0.559 0.862 0.531 0.345
CB Character bigrams
CT Character trigrams
CBT Character bigrams & trigrams
FW Function words
POSB Top 200 POS bigrams
POST Top 200 POS trigrams
POSBT Top 200 POS bigrams & trigrams
FW CBT Function words and character bigrams & trigrams
FW A BT Function words and character bigrams & trigrams and top 200 POS bigrams & trigrams

Table 4.3: Accuracy and F-scores for each feature set (Naive Bayes)

Figure 4.3 graphically shows the direct comparison of accuracies between MegaM (maximum
entropy) and Naive Bayes. It clearly demonstrates that MegaM outperforms Naive Bayes on
all feature sets. The f-scores comparisons for each individual languages are given in Appendix
B, and they show roughly the same pattern. Japanese function words perform slightly better on
Naive Bayes, but on the whole, MegaM does better. Therefore, the remainder of the research
will be done only using MegaM. We also tried the intra-regional classification by collapsing the
data and grouping them by region, and repeated the classification task using the same feature
sets used in this section; however, the overall performance did not increase. The full results are
shown in Appendix D.
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Figure 4.2: Accuracies and F-scores for individual languages (Naive Bayes)

0	  

0.1	  

0.2	  

0.3	  

0.4	  

0.5	  

0.6	  

0.7	  

0.8	  

0.9	  

character	  bigram	  no	  case	  
change	  

character	  trigram	  no	  
case	  change	  

character	  bigrams	  +	  
trigrams	  	  

456	  func=on	  words	  
(independent	  list)	  

top	  200	  POS	  bigrams	  	  	  	  	  	  	  	  	  	  	  	  	  	  
(Brown	  corpus)	  

top	  200	  POS	  trigrams	  
(Brown	  corpus)	  

top	  200	  POS	  bigrams	  +	  
trigrams	  (Brown	  corpus)	  

456	  func=on	  words	  
(independent	  list)	  +	  
character	  bigrams	  +	  

trigrams	  	  

456	  func=on	  words	  
(independent	  list)	  +	  
character	  bigrams	  +	  

trigrams	  +	  pos	  bigram	  +	  
trigram	  top	  200	  (brown	  

corpus)	  

MegaM	  

Naïve	  Bayes	  

Figure 4.3: Comparing accuracies between MegaM and Naive Bayes

42



4.4 Character Trigrams Analysis
As shown above, character trigrams outperformed all other feature sets, and we discussed that
character n-grams in general capture nuances of style, including lexical information, hints of
contextual information, and use of punctuation and capitalization. To learn exactly what is
driving the character trigrams’ performance, we conducted several different types of character
trigrams experiments as described in the following lists, and the results are shown in Table 4.4
and plotted in a graph in Figure 4.4.

Machine Learning Tool: Megam
Features Accuracy Native Bulgarian Chinese Czech French Japanese Russian Spanish
CT 0.813 0.859 0.814 0.919 0.762 0.771 0.900 0.705 0.783
CTU 0.807 0.851 0.830 0.904 0.761 0.764 0.889 0.686 0.779
CTGRW 0.798 0.817 0.804 0.902 0.755 0.763 0.879 0.704 0.770
CTNS 0.812 0.814 0.828 0.896 0.773 0.789 0.880 0.750 0.767
CTAS 0.800 0.820 0.800 0.925 0.761 0.744 0.882 0.713 0.763
CTNP 0.791 0.810 0.788 0.902 0.742 0.747 0.877 0.700 0.767
CT Character trigrams
CTU Character trigrams upper case
CTGRW Character trigrams + no trigrams with white spaces
CTNS Character trigrams + no white space
CTAS Character trigrams + after stemming
CTNP Character trigrams + no punctuation

Table 4.4: Accuracy vs F-scores
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Figure 4.4: Character trigrams
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• To eliminate the case bias, we changed the entire corpus’ text case to upper case and
repeated the character trigram experiments on the upper-cased corpus (CTU). The result
did not even drop 1%.

• To eliminate the space bias, we repeated the experiments without spaces using two dif-
ferent methods. In the first method, we removed all the character trigrams that had at
least one space and performed the classification tasks with the rest of the character tri-
grams (CTGRW) . Tthe result shows that the overall accuracy dropped about 1.5%. In
the second method, we removed the white spaces in the original corpus and performed
the character trigrams classification task on the space-less corpus (CTNS). The result also
shows almost no changes.

• To eliminate the affix bias, we used the NLTK porter stemming tool, which converts the
words to their root word, to stem all the words in the corpus, and we then repeated the
experiments (CTAS). The result shows a 1.3% drop.

• To eliminate the punctuation bias, we removed all the punctuation marks in the corpus
and repeated the experiments (CTNP). The result shows only a 2% drop.

We just learned from the experiments that case, spaces, affixes, and punctuation were not the
major factors that affecting the character trigrams’ performance. Therefore, in order to un-
derstand what drives the character trigrams’ performance, we used the entropy techinque to
identify the most distinctive character trigrams for further analysis; the most discriminating
character trigrams are listed in Table 4.5.

In Table 4.5, underscores ( ) indicate white spaces and the numbers to the right of the character
trigrams’ column represent the actual count of that particular character trigram seen in each
language corpus. For example, the character trigram hno was seen 506 times in the Bulgarian
corpus, but it was seen 104 times in the Chinese corpus.
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Character trigrams with low entropies
Character trigrams Bulgarian Chinese Czech French Japanese Native Russian Spanish
. 2 70 17 32 3 1,835 5 3
: 4 3 28 422 0 12 49 16
, 46 70 30 55 14 36 413 109
TV 38 182 362 65 73 3 248 56

... 97 7 77 243 8 15 68 173
: t 26 3 15 190 4 18 59 87
Br 27 70 19 59 22 344 26 32

hno 505 104 149 68 22 41 134 166
TV 28 136 304 41 53 2 186 41
nol 506 105 150 70 26 46 136 168
Bul 102 0 0 0 3 9 2 0
uro 19 3 66 987 40 374 47 103
Bri 20 65 10 48 21 313 14 18
rop 118 98 146 1067 77 470 123 168
ngl 129 44 72 110 1062 267 82 59
Mr 2 7 79 222 11 9 2 11

fes 123 571 94 62 32 77 176 187
rmo 53 33 19 226 16 25 26 33
van 108 509 72 87 67 68 51 155
apa 89 25 16 62 909 43 26 71
dva 68 496 49 59 61 56 40 115
Ho 106 955 95 86 188 205 55 69

tag 63 543 81 87 61 90 55 93
ony 18 3 14 211 30 12 17 31
Eur 18 2 61 954 30 358 42 94
edi 105 960 139 106 122 181 150 157
.. 54 10 42 154 4 8 37 98
Am 29 10 37 69 116 224 44 25

S - 116 3 88 34 1 35 46 31
nty 18 10 38 36 16 163 37 40
Ru 4 1 17 6 4 5 124 8

Ame 28 9 33 58 120 228 43 22
ewa 110 9 19 9 3 46 21 11
Ra 9 9 65 197 8 38 6 10

e - 115 7 100 32 3 14 41 17
rmy 1 32 107 42 5 7 192 131
Sp 7 11 12 28 13 17 7 145

eam 992 16 558 195 62 95 415 262
ybe 57 413 53 27 39 28 18 49
deg 237 62 33 74 15 16 51 111
sov 1 3 7 16 5 136 14 16
Ca 10 66 48 24 45 271 23 34

s R 1 2 31 139 1 8 3 8
dit 86 970 106 94 147 129 124 103
ilm 34 5 120 40 5 5 117 49
ane 67 15 50 67 578 39 62 39
Int 37 43 3 7 132 10 14 20
sm 65 714 99 53 115 87 63 50

Table 4.5: Character trigrams with low entropies
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We chose six character trigrams from Table 4.5 and pulled out all the words that these six char-
acter trigrams are capture. In other word, we identified the original words that are originating
these six character trigrams, and listed them in Tables 4.6 to 4.11. Table 4.6 shows that hno was
mostly driven from the word technology and it was a good marker for Bulgarian; the Native
corpus frequently used the word British, which was captured by Bri as shown in Table 4.7; the
Japanese corpus frequently used the word Japanese and Japan, captured by apa; the Chinese
corpus frequently used the word professionals, captured by fes and Hong, captured by Ho; and
the French corpus frequently used the word harmony, captured by rmo. Beside the six character
trigrams we just presented, there are other distinctive character trigrams originated by content
words: the character trigram Bul originated from the word Bulgarian, which was a good marker
for Bulgarian; rop and Eur originated from the word Europe, which was a good marker for
French; Sp originated from the word Spanish, which was a good marker for Spanish. The most
important finding from this empirical analysis is that most of the distinctive character trigrams
are capturing the content words in the corpus.

If it is the case that character trigrams’ performance is driven by the content words, it also
explains why eliminating the case-sensitive, white space, punctuation, and affixes biases did
not affect the overall accuracy significantly, as we saw from the previous sections. For example,
when we moved spaces, the reason why the performance did not drop much was because the
relevance trigrams in word boundaries are not themselves causing the discrimination. Let us
say we have “in the ” and “in every” in a sentence, and when we get rid of spaces, then we are
left with nth and nev; it might be that those trigrams happen less frequently across the character
trigrams then internal trigrams in a discriminative word such as “technological”. Therefore,
the information that space provides in discriminability is much less than the character trigrams
inside of the content words.

Trigram: hno
Class Words from the corpus
Bulgarian technology (325), technological (99), technologies (51), Technologically (2)
Chinese technology (88), technologies (4), high-technology(4)
Czech technology (131), technological (8)
French technology (51), technologies (7), technological (7)
Japanese technology (15), technologies (4), thechnology (1), technorogy (1)
Native technology (26), technological (5), ethno-centric (1), ethnocentric(1), biotechnology (1)
Russian technology (95), technological (21), technologies (11), technocratic (1), technologisation (1)
Spanish technology (134), technological (22), technologycal (2), thechnology (1)

Table 4.6: Actual words that includes the trigram “hno”
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Trigram: Bri
Class Words from the corpus
Bulgarian British (9), Britain (8), Brilliant (1)
Chinese British (33), Britain (31), Bridge (1)
Czech British (3), Britain (3), Brisc (2)
French Briscoe (21), Britain (12), British (10), Great-Britain (4)
Japanese British (12), Britain (7), Bright (1)
Native Britain (187), British (100), Britons (11)
Russian British (7), Britain (7)
Spanish Britain (13), British (4)

Table 4.7: Actual words that includes the trigram “Bri”

Trigram: apa
Class Words from the corpus
Bulgarian capable (28), apart (16), capacity (16), incapable (9)
Chinese capacity (17), capable (5), Japan (1)
Czech capable (7), apart (6)
French capacity (13), Japan (13), capable (11), apart (11)
Japanese Japanese (520), Japan (344), Japanes (8), capability (2)
Native apart (12), capable (6), capacity (6), capabilities (5)
Russian capable (8), apartment (4), capacity (3), apart (3)
Spanish capacity (31), apart (13), capable (13), capacities (4), incapable (3)

Table 4.8: Actual words that includes the trigram “apa”

Trigram: fes
Class Words from the corpus
Bulgarian professions (43), professional (40), , professors (10)
Chinese professionals (235), cafes (212), professional (80)
Czech professional (38), profession (10), confess (7), lifestyle (5), lifes (4)
French professional (39), professors (7), lifestyle (1)
Japanese professional (13), professor (5), festival (3)
Native professors (21), professional (12), professions (9), lifestyles (6)
Russian Professional (113), profession (33), lifes (6), professor (5)
Spanish professional (95), lifes (55), professions (7)

Table 4.9: Actual words that includes the trigram “fes”
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Trigram: rmo
Class Words from the corpus
Bulgarian Furthermore (26), harmony (11), enormous (9)
Chinese Furthermore (24), harmony (2), hormones (2), enormous (2)
Czech enormous (8), harmony (5), Furthermore (2)
French harmony (184), Furthermore (11), enormous (7), harmonizsation (6)
Japanese Furthermore (9), harmony (4), enormous (3)
Native Furthermore (6), enormous (3), harmony (2)
Russian enormous (12), harmony (8)
Spanish Furthermore (19), enormous (7), armory (2)

Table 4.10: Actual words that includes the trigram “rmo”

Trigram: (space) + Ho
Class Words from the corpus
Bulgarian However (73), How (17)
Chinese Hong (776), However (159), How (13), Hongkong (2)
Czech How (42), However (39)
French However (51), How (27)
Japanese However (135), How (22), Hokkaido (13)
Native However (131), House (11), Hoederer (9)
Russian How (25), However (15), Hollywood (3)
Spanish However (50), How (9)

Table 4.11: Actual words that includes the trigram “space + Ho”
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4.5 Lexical Model
In this section, we will observe a word-based model and compare the model to the character
trigrams’ model to see how performance changes as the top content words are extracted.

4.5.1 Lexical Model vs Character Trigrams Model
In the previous section, we discussed that the strong signals in character trigrams are driven
from the content words; therefore, we will compare the character-trigrams model to the lexical
model. We used bag of words, also known as word unigrams, as our lexical feature set to
build a lexical model. Table 4.12 shows the performances of both lexical and character trigrams
models, plotted in a graph in Figure 4.5. Based on these performances, it appears that there is
a strong correlation between these two models, which is consistent with the observations we
made from the character trigrams’ analysis section.

Machine Learning Tool: Megam
Features Accuracy Native Bulgarian Chinese Czech French Japanese Russian Spanish
BOW 0.8143 0.838 0.805 0.934 0.741 0.775 0.911 0.706 0.811
CT 0.813 7 0.859 0.814 0.92 0.762 0.772 0.901 0.705 0.783
BOW Bag of words
CT Character trigrams

Table 4.12: Character trigrams vs Bag of words
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4.5.2 Latent Dirichlet Allocation (LDA)
We have seen that there is a strong correlation between the character trigrams and the lexical
models; therefore, we hypothesize that the character trigrams simply simulate the lexical model.
If the content words are doing all the work, it could be also seen as the distinctions between the
documents written by different native speakers are actually driven by the topics. Therefore, we
used the LDA model to verify this notion by using the distribution of topics as the feature sets,
and results are shown in Table 4.13.

Machine Learning Tool: Megam
Features Accuracy Native Bulgarian Chinese Czech French Japanese Russian Spanish
LDA coef-
ficients

0.561 0.6103 0.675 0.823 0.371 0.567 0.762 0.308 0.346

Table 4.13: LDA coefficients (θ) (k-50)

Using LDA topic models across 50 topics alone as the feature set, we find that an indication
that each language corpus contains a significant number of topic words that are unique to their
corpus. The Chinese f-score is 0.823, which is significant considering that the vector space is
only 50. The overall performance is not as high as some of the performances we saw in the
previous sections, but this result is based on only 50 topics. We expect that as we increase
the topic space to higher dimensions, the overall performance will increase respectively. For
example, if Russians frequently used the word computer and Chinese frequently used the word
technology, then in a small dimension topic space, the LDA model may cluster the two words
into the same topic, but in a higher dimension space, there is a higher chance that these two
words will be assigned to separate topics, which will help us to discriminate between Chinese
and Russians. However, we feel that those experiments are unnecessary since the topic model
with a dimension size of 50 has already shown that there are topics that need to be controlled
for more precise experiments.

4.5.3 Results from a Topic-Controlled Environment
Above experiments with the LDA model demonstrate that topics are strong discriminative fac-
tors, and if topics are doing all the work, it is difficult to measure if there are other signals that
may have been contributing to discriminating different languages. Therefore, we used Term
Frequency-Inverted Document Frequency (TF-IDF) as the method to identify and extract the
content words to control these topics. For simplicity, we will refer to topic related words as
content words from now on.
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tfidft = ft,d × log

(
D

ft,D

)
(4.1)

The first term, Term frequency, ft,d, simply refers to the frequency of term t in document d, so if
we are computing the word technology, ft,d would be the number of times the word technology

appeared in a document. The second term, Inverted Document Frequency, log( D
ft,D

), refers to
assigning higher weights to a word that occurs frequently in one document but less frequently
in other documents. Therefore, if the word technology appeared in 35 different documents out
of the entire corpus, IDF can be computed as log(1600

35
) since there are 1,600 essays in our entire

corpus. However, if the word technology appeared in 100 different documents, the IDF part
will dampen the TF-IDF values. As discussed in the beginning of Chapter 3, we made each
subcorpus size similar to maintain uniform size distribution of essays across the entire corpus
and eliminate the need for normalization. Therefore, we did not normalize the values during the
TF-IDF computation.

We extracted the top 114 words, top words in terms of the most weighted word by TF-IDF, and
presented them in Table 4.14. In other words, the words in Table 4.14 are the words that were
used frequently by writers of a particular language while infrequently used by those of other
languages. The top weighted words include not only content words but also function words
if the word counts meet the threshold. The words in bold are the ones we have seen from the
previous sections when we analyzed the most discriminative character trigrams and what words
those character trigrams were capturing. Table 4.14 also includes function words such as I and
You, which is not very shocking since we have already seen these function words in Table 4.2,
which listed the most discriminative function words.

THEORETICAL KNOWLEDGE STUDENTS DREAM TECHNOLOGY UNIVERSITY DREAMING EQUAL
CONTRIBUTION WE DREAMS OUR EDUCATION IMAGINATION EQUALITY YOU SCIENCE
INFORMATION SOCCER CARD WASTE TELEVISION HONG MAY ACCORDING SMOKE CARDS
CAFES ADVANTAGES CYBER GOVERNMENT RESTAURANT BETTING CAFE MAINLAND SMOKERS
MATERIALS BANNING SMOKING PLASTIC RECYCLING CHINA PROFESSIONALS RAILWAY
ABORTION MANAGEMENT IMPORTING DEBT USE STUDENT DISADVANTAGES RESTAURANTS
FINANCIAL KONG HEALTH INTERNET CREDIT WOMEN SCHEME USING LOCAL I CHILDREN
SHE RELIGION TV HIS HER MONEY HE WAS JAPANESE MY DOG AINU PHONES E-MAIL DON’T
JAPAN PENALTY CELL SCHOOL LANGUAGE CELLULAR PHONE SPEAK ENGLISH MRS NATION
COUNTRIES DENIS HARMONY 1992 COMMUNITY EUROPE IDENTITY RAMSAY EUROPEAN MEN
MILITARY SERVICE ARMY PRISON ETHNIC BRITAIN VOLTAIRE CANDIDE MARIJUANA BEEF
LOTTERY SOVEREIGNTY BOXING SEX

Table 4.14: The top 114 most weighted TF-IDF words
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To build a topic-free corpus, we have to extract all topic words; however, there is no definite
number for how many words should be extracted. Thus, we used the 12 different TF-IDF
thresholds as shown in Table 4.15, and conducted the experiments on all 12 cases. In other
words, when the threshold was set to 100, TF-IDF removed the top 245 content words and then
conducted classification tasking using various feature sets on the corpus that had 245 fewer
words.

Threshold Number of word types above the threshold % of corpus
100 245 0.758 %
90 294 0.911 %
80 386 1.195 %
70 518 1.604 %
60 681 2.109 %
50 925 2.865 %
40 1,292 4.002 %
30 1,884 5.837 %
25 2,358 7.305 %
20 3,007 9.316 %
15 4,052 12.554 %
10 6,069 18.802 %

Table 4.15: Data size

As discussed in Chapter 3, we used the following feature sets to experiment on the 12 different
content-free corpora:

• LDA coefficients (k = 50)

• Character trigrams, uppercase, no space, and stemmed

• Character trigrams, upper case, no space, stemmed, and no function words

• Character quadgrams, upper case, no space, and stemmed

• Bag of words (word unigram)

For simplicity, in this section, when we say character trigrams, we are referring to character
trigrams, upper case, no space, stemmed, and when when we say character quadgrams, we
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are referring to character quadgrams, upper case, no space, and stemmed, and lastly, when
we say character ngrams, we are just referring to the above-mentioned character trigrams and
quadgrams.

Overall, when the most distinctive words are extracted, the performances dropped as expected.
Figure 4.6 shows five graphs where each graph shows the performance of each feature set across
the 12 TF-IDF threshold.
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(c) Character trigrams
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(d) Character trigrams with no function words
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(e) Character quadgrams

Figure 4.6: Classification results after word extractions
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The x-axis indicates the actual number of extracted word types, and the y-axis indicates mea-
surement which is either accuracy or f-scores. In general, with the exception of the LDA model,
the rest of the feature sets, subfigures 4.6b - 4.6e, show similar patterns while they are extracted.
In the LDA model, the actual feature set is the distribution of topics, where each topic is a distri-
bution of words. To recall, the dimension size of the LDA model is only 50, so performance is
significantly worse than with other feature sets. Also, when we removed the top-content words,
the distribution of words for each topic became more similar to other topic distributions, and
when distinctions disappeared, it appears that random noises causing the oscillation that can be
seen in the graph.

Figure 4.7 shows the direct comparison of accuracies between the character n-grams and the
lexical model. The accuracy for the LDA model is not included since we are only interested in
comparing the performances of bag of words and character n-grams.
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Figure 4.7: Accuracies

Figure 4.8 shows eight different graphs where each graph displays each language’s f-scores for
different feature sets.
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(a) Native f-scores
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(b) Bulgarian f-scores
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(c) Chinese f-scores
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(d) Czech f-scores
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(e) French f-scores
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(f) Japanese f-scores
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(g) Russian f-scores
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(h) Spanish f-scores

Figure 4.8: Performances for individual languages
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Based on these graphs, we made the following observations (tables of the complete results are
shown in Appendix E):

• At first, the lexical model performed slightly better than the character n-grams, which sug-
gests that although character n-grams are simulating the lexical model, as we discussed in
the previous sections, they are not finely-tuned model since they also capture noises such
as subsets of words that are adjacent to each other.

• When about 7% of the top words were extracted, the accuracy of the lexical model
dropped below that of the character quadgrams, and when about 10% of the top words
were extracted, it dropped below that of the character trigrams. When so many distinc-
tive words are extracted, the word distributions become flat and the lexical model suffers
more severely since there are fewer distinctions between the word distributions the lexi-
cal model has to rely on; however, character n-grams still capture other signals which are
not relatively significant until the most discriminative character n-grams disappear due to
content-word removal.

• The patterns of an individual language’s f-scores are similar to the pattern of accuracy the
most part. Each language has its own unique pattern to a degree, but the overall patterns
are consistent.

4.6 Conclusion
In this section, we have initially explored the various types of feature sets that were explored
in Koppel’s research and learned that character trigrams are the best performing feature sets.
After an empirical analysis of character trigrams, we also learned that they simulate the word
model, which means that character trigrams just model lexical use. Then we used the LDA
model to verify that the corpus contains unique topic distributions that may be influencing
the performances of lexical and character models to a certain degree. To further investigate
the relationship between character trigrams and the lexical model on a topic-free corpus, we
used the TF-IDF techniques to extract the most distinctive words and repeated the experiments.
As discussed in the latter section of the chapter, both character n-grams and bag of words
performances dropped as the top words were extracted in similar patterns at first. However,
when about 10% of word types were extracted, the lexical model’s performance dropped more
drastically than that of the character n-grams. It is difficult to measure how much the L1-
L2 language transfer is influences lexical usage, but based on our experiments and results,
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we conclude that the lexical model is the strongest feature set, and character n-grams simply
simulate the lexical model until a significant amount of content words are extracted.
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CHAPTER 5:
Conclusions and Future Work

5.1 Summary
This thesis addressed three questions. The first question was, “How well can we detect an
author’s native language using various natural language processing tools?” As shown in Chapter
4, the answer is that we can detect authors’ native language with a higher than 80% accuracy
using either character trigrams or bag of words alone as a feature set. Syntactical feature sets
such as POS n-grams and distribution of transformation rules worked fairly well for detecting
Chinese and Japanese, but it performed less well with Slavics and Romance languages. We
also compared the overall performance between Maximum Entropy and Naive Bayes, and the
results showed that Maximum Entropy performed significantly better than Naive Bayes.

The second question was, “What is the strongest feature set and why does that particular fea-
ture set work better than the other feature sets?” The bag of words showed the best results,
followed by character trigrams. Empirical analysis of character trigrams revealed that the most
discriminative character trigrams originate in content words, which showed evidence that char-
acter trigrams are just modeling lexical usages. Based on these results, we concluded that the
best indication for detecting authors’ native languages is their lexical usage. There may be some
signals caused by L1-L2 language transfer at the syntactic or character level, but if such signals
exist, our hypothesis is that the frequency of the occurrences of these signals is significantly
lower than that generated by the lexical feature sets, and they become insignificant.

The third question was, “To what extend is the second question dependent on the topics dis-
cussed in the corpus?” To answer this question, we used the LDA model to show that the dis-
tribution of topics of each language corpus is distinct from other distributions, which indicated
that the topics are actually doing the work. Then we used TF-IDF techniques to identify and
extract the top content-words, and as the content words are extracted, the performance of the
lexical model and the character n-grams dropped with respect to the size of words extracted. In
other words, as the topics were extracted, the performance dropped; this phenomenon explained
that the topics were doing the work.
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5.2 Future Work
5.2.1 Spelling Errors
Reading the corpus also revealed that each language had spelling errors that are unique to each
language. For example, Chinese writers tend to misspell discuss as diskuss and Bulgarian tend
to misspell discover as diskover. Also, as discussed in Chapter 2, Koppel used spelling errors
as a feature set in his experiment, and he learned that there was a relatively large number of
incorrect usages of double consonants in the Spanish corpus [15]. Although we did not inves-
tigate the types of spelling errors in depth, we used the statistical measurements to learn how
frequently writers misspelled words in general.

Spelling Errors
Bulgarian Chinese Czech French Japanese Native Russian Spanish

Mean 3.81 6.595 7.82 5.19 4.045 7.1 5.13 11.885
Standard deviation 3.189 5.011 5.810 3.626 4.494 6.082 5.817 8.328

Table 5.1: Average and standard deviation of spelling errors for each language
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Figure 5.1: Bell curves (x-axis: number of misspelled words)

Table 5.1 presents the average number of spelling errors per document and the standard devia-
tion for each language, and then we used the means and standard deviations to graph the normal
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distributions as shown in Figure 5.1. The normal distribution shows that the Spanish distribu-
tion is more shifted to the right, and the peak is lower but wider, which indicates that Spanish
writers make spelling errors more often than writers of other languages. Another interesting
observation we made was that the mean value of spelling errors in the Native corpus is not
significantly lower than the other languages. Consequently, when we pulled out the misspelled
words in the Native corpus, most of the errors consisted of adding s to the non-countable nouns
such as Britains, and slang or made up words that were not in the dictionary list, such as Euro-

phobic and Europeanism. There are significant indications that using spelling errors as a feature
set could improve the overall performance; therefore, it is worth investigating this method in
future research. A simple way to test the role of spelling errors would be to find out whether
removing misspelled words makes a difference.

5.2.2 Grammatical Errors
We discussed in Chapter 2 that L1-L2 language transfer influences the learners’ learning of an
L2, and that influence is a probably result of learners making grammatical mistakes such as
misplaced modifiers, misused determiners, and errors in subject-verb agreement, just to name
few. If there is a way to accurately capture these error patterns that is unique to a particular
language, it will be an invaluable feature set for building an accurate model for each language,
but such a task is very difficult. There are many off-the-shelf grammar-correction tools, but as
far as we know, there is no tool that can capture these grammatical errors precisely enough to
apply it to this type of problem. Some of the feature sets we used, such as POS n-grams and
the distribution of transformation rules, could capture some grammatical patterns that are not
usually found in writings by native speakers, but the Stanford parser, which we used for parsing
sentences and POS tagging in this research, is created to work for sentences that are written
grammatically correctly; consequently, although POS n-grams performed relatively well on
the corpus written by native Chinese, it is difficult to measure how well POS n-grams and
the distribution of transformation rules actually capture the effects of L1-L2 language transfer,
especially grammatical errors influenced by L1-L2 language transfer. Wong and his team chose
three grammatical error types (subject-verb agreement, noun-number disagreement, and misuse
of determiners), and used them as their few feature sets using an in-house built tool that just
captures these three grammatical error types; however, adding these grammatical error types
did not improve the overall performance compared to the performance without them [16]. Also,
the tool Wong and his team built produced 49% false positives, which may have affected their
results. Wong concluded that either grammatical errors are not a good indicator or capturing
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just three error types was not enough to produce any significant change in the result [16]. In
future work, using more types of grammatical errors will be worth investigating.

Furthermore, as discussed in Chapter 2, different languages have different word order; for ex-
ample, Japanese use Subject-Object-Verb order, and other languages have their own rules gov-
erning positions of adjectives and adverbs; these differences influence learners’ writings in some
way. If there is a particular grammatical error type that is made by writers of just one particular
language, that will be a great indicator for modeling that language, and if there is such an error
type, that is what we need to find. Using many different types of grammatical errors does not
necessarily mean that they are good features, but we have to find those errors that help us to
distinguish one language from the rest. Although there are linguistic theories about which er-
ror types may work better than others, conceived by studying the differences of the language’s
grammatical structure, the only way to confirm these hypotheses is to test and verify them. The
challenging part of this task is to build a tool that can precisely capture these error types.

5.2.3 Chinese
The results show that Chinese outperformed the rest of the languages in all feature sets we used;
Character n-grams’ f-scores reached 0.9, function words reached 0.8, and the POS n-grams
reached close to 0.8 while those of other languages (except Japanese) were around 0.5, and the
word unigrams’ f-scores reached 0.93. We also learned that topic words such as Hong Kong

and Cyber were driving these high f-scores; however, even when topic words were removed,
Chinese continued to outperform the other languages. With the bag of words as a feature set,
when about 3000 topic words were removed, Chinese f-scores were about 0.65 while those of
other languages were down in 0.4 range. With the character trigrams, Chinese f-scores stayed
about 0.6 while those of other languages dropped below 0.4 when about 6000 topic words were
removed. There must be some other indications that are driving these Chinese performances
beside topic words. One way to investigate this phenomenon is to repeat the empirical analysis
of character trigrams after topic words are extracted just as we did in Chapter 4 Section 4 to
learn what drives the character-trigram’s performance even after topic words are removed.

5.2.4 Noun Modifiers
After observing the corpus, we also noticed that some writers tend to stay with simple sentence
styles (subject-verb-object), and they used sentences that had few adjectives as noun modifiers
more often. Therefore, it maybe worth investigating the complexity of usages of noun modifiers
according to language. If a learner’s L1 uses a different grammatical structure from English to
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describe a noun, the learner may try to avoid using complex noun modifiers such as preposi-
tional phrases or noun phrases or participial phrases or infinitive phrases or adjective clauses as
modifiers. Also, the order of modifiers in front of nouns may be challenging for some learners,
so theyt may try to stay with simple one adjective-type modifiers. One way to test this hypothe-
sis is to use the parsed trees of the Stanford parser. For example, Figure 5.2 shows a parsed tree
of the sentence I am a swimming champion in New York. The first NP (noun phrase) captures
swimming champion in New York, and inside of the first NP, there is another noun phrase (a
swimming champion) followed by a prepositional phrase (PP) (in New York). From the parsed
tree in Figure 5.2, we can learn that there is a prepositional phrase that modifies a noun, and
there are two modifiers (a and swimming) that modify the same noun where a is one distance
away from the describing noun and swimming is zero distance away from the describing noun.
Therefore, in future research, it may be worth investigating whether using both the POS tags
that modify nouns (including their distance from the describing noun) and the frequency of us-
age of phrases that modify nouns, such as preposition phrase of participial phrase, as a feature
set would improve the overall performance.

I am a swimming champion in New York.
(ROOT

(S
(NP (PRP I ))
(VP (VBP am )
(NP
(NP (DT a ) (VBB swimming) (NN champion ))
(PP (IN in)

(NP (NNP New) (NNP York)))))
(. .)))

Figure 5.2: Stanford parser output

5.2.5 Phonological Transfer
As discussed in Chapter 2, Section 8, Rappoport conducted an in-depth investigation to learn
what was driving the performance of character bigrams, and he concluded that they might be
capturing language transfer effects at the level of basic sounds and short sound sequences [10].
We, on the other hand, concluded that character trigrams were simply simulating the lexical
model through empirical analysis. However, when about 20% of topic words were extracted,
while the bag of words’ f-score dropped close to 0.3 for all languages, the character trigrams
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and quadgrams performed significantly better than the bag of words. In the case of Chinese,
as we have seen in the previous section, when about 20% of topic words were extracted, the
character trigrams’ f-score was up in the 0.6 range, while that of the bag of words was down
in the 0.35 range. Character trigrams and quadgrams were tested after spaces were removed,
cases were all converted to upper case, punctuation was removed, and the words were stemmed;
consequently, we can conclude that character trigrams and quadgrams are capturing some other
indications such as traits influenced by L1-L2 phonological transfer, as Rappoport concluded
in his research. Therefore, it may be worth investigating whether L1-L2 phonological transfer
influences the character n-grams’ performances, and if that is the case, it will be interesting to
find out if this feature set will improve the overall performance when it is combined with the
other feature sets. One way to investigate the phonological transfer hypothesis is by building a
character trigrams model from each group’s L1 corpus and comparing that to the same models
built from L2 corpora. For example, build a character trigrams model from a corpus written
in Spanish and call this the Spanish L1 model. Then also build character trigrams models for
Spanish L2, French L2, Czech L2, and Native L2. If we can demonstrate that the Spanish L1
model has a closer relationsip to the Spanish L2 model than it is to other languages’ L2 models,
we can conclude that character trigrams capture L1-L2 phonological transfer to some degree.

5.3 Concluding Remarks
The results of this research show that it is possible to differentiate authors’ native languages
based on their writing in English by exploring all their syntactic, lexical, and character styles,
using models generated by Maximum Entropy. We have learned that the strongest indication of
native provenance is in lexical usage when we observed that the bag of words performed better
than the other feature sets, followed by character trigrams where these were shown to be simply
simulating the word model. However, our result is not robust enough to apply in real world
applications yet. As discussed above, there are many future avenues that can be investigated to
improve the quality of this research, and the size of the corpus we used in this research may not
be big enough to accurately capture the representation of each group’s writing style.
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APPENDIX A:
Confusion Matrices

Classified As
Actual Native Bulgarian Chinese Czech French Japanese Russian Spanish Total
Native 13.7 0.7 0.4 1.2 2.0 0.5 0.6 0.9 20.0
Bulgarian 0.1 15.2 0.1 0.8 0.9 0.2 1.5 1.2 20.0
Chinese 0.9 0.4 16.4 0.5 0.3 0.7 0.5 0.3 20.0
Czech 0.7 1.4 0.4 13.3 0.6 0.3 3.0 0.3 20.0
French 0.7 1.3 0.1 0.9 13.5 0.1 1.2 2.2 20.0
Japanese 0.8 0.3 0.7 0.6 0.3 16.5 0.5 0.3 20.0
Russian 0.3 2.4 0.2 1.8 1.7 0.5 11.9 1.2 20.0
Spanish 0.4 1.0 0.1 0.7 2.1 0.1 1.7 13.9 20.0
Total 17.6 22.7 18.4 19.8 21.4 18.9 20.9 20.3 160.0

Table A.1: Character bigrams (MegaM)

Classified As
Actual Native Bulgarian Chinese Czech French Japanese Russian Spanish Total
Native 16.5 0.4 0.1 0.7 0.7 0.5 0.1 1.0 20.0
Bulgarian 0.0 17.3 0.1 0.4 0.4 0.1 1.1 0.6 20.0
Chinese 0.4 0.4 17.8 0.4 0.1 0.3 0.4 0.2 20.0
Czech 0.4 1.2 0.0 15.4 0.2 0.4 1.9 0.5 20.0
French 0.4 1.0 0.0 0.9 15.4 0.0 0.9 1.4 20.0
Japanese 0.5 0.1 0.5 0.5 0.3 17.7 0.1 0.3 20.0
Russian 0.1 1.8 0.2 1.7 0.9 0.3 14.0 1.0 20.0
Spanish 0.1 0.3 0.0 0.4 1.9 0.0 1.2 16.1 20.0
Total 18.4 22.5 18.7 20.4 19.9 19.3 19.7 21.1 160.0

Table A.2: Character trigrams (MegaM)
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Classified As
Actual Native Bulgarian Chinese Czech French Japanese Russian Spanish Total
Native 15.8 0.5 0.2 1.0 0.8 0.4 0.5 0.8 20.0
Bulgarian 0.1 17.1 0.1 0.3 0.4 0.1 1.2 0.7 20.0
Chinese 0.6 0.3 17.7 0.4 0.1 0.3 0.4 0.2 20.0
Czech 0.4 0.9 0.0 14.7 0.6 0.5 2.4 0.5 20.0
French 0.3 1.2 0.1 0.7 15.3 0.1 1.0 1.3 20.0
Japanese 0.5 0.2 0.6 0.4 0.4 17.6 0.1 0.2 20.0
Russian 0.1 2.3 0.1 1.7 0.9 0.2 13.6 1.1 20.0
Spanish 0.3 0.6 0.0 0.4 2.3 0.0 1.5 14.9 20.0
Total 18.1 23.1 18.8 19.6 20.8 19.2 20.7 19.7 160.0

Table A.3: Character bigrams & trigrams (MegaM)

Classified As
Actual Native Bulgarian Chinese Czech French Japanese Russian Spanish Total
Native 12.6 0.7 0.8 1.0 2.3 1.1 0.6 0.9 20.0
Bulgarian 0.6 12.7 0.6 2.3 0.9 0.2 2.0 0.7 20.0
Chinese 0.7 0.5 16.2 0.2 0.6 1.1 0.4 0.3 20.0
Czech 0.6 1.6 0.2 12.4 0.8 1.0 2.6 0.8 20.0
French 1.5 1.2 0.5 1.0 11.7 0.2 1.7 2.2 20.0
Japanese 1.3 0.2 1.0 0.4 0.5 15.0 1.1 0.5 20.0
Russian 0.7 2.1 0.5 2.5 1.3 0.4 11.1 1.4 20.0
Spanish 1.3 0.9 0.3 1.1 2.3 0.2 1.3 12.6 20.0
Total 19.3 19.9 20.1 20.9 20.4 19.2 20.8 19.4 160.0

Table A.4: Function words (MegaM)

Classified As
Actual Native Bulgarian Chinese Czech French Japanese Russian Spanish Total
Native 12.6 0.7 0.8 1.0 2.3 1.1 0.6 0.9 20.0
Bulgarian 0.6 12.7 0.6 2.3 0.9 0.2 2.0 0.7 20.0
Chinese 0.7 0.5 16.2 0.2 0.6 1.1 0.4 0.3 20.0
Czech 0.6 1.6 0.2 12.4 0.8 1.0 2.6 0.8 20.0
French 1.5 1.2 0.5 1.0 11.7 0.2 1.7 2.2 20.0
Japanese 1.3 0.2 1.0 0.4 0.5 15.0 1.1 0.5 20.0
Russian 0.7 2.1 0.5 2.5 1.3 0.4 11.1 1.4 20.0
Spanish 1.3 0.9 0.3 1.1 2.3 0.2 1.3 12.6 20.0
Total 19.3 19.9 20.1 20.9 20.4 19.2 20.8 19.4 160.0

Table A.5: Top 200 POS bigrams (MegaM)
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Classified As
Actual Native Bulgarian Chinese Czech French Japanese Russian Spanish Total
Native 8.5 1.0 1.9 1.6 1.8 1.5 1.7 2.0 20.0
Bulgarian 1.5 8.4 0.4 2.0 2.2 0.6 2.8 2.1 20.0
Chinese 1.7 0.7 15.0 0.2 0.2 1.0 0.8 0.4 20.0
Czech 1.4 2.3 0.2 7.6 1.0 1.5 4.6 1.4 20.0
French 1.3 2.7 0.5 1.4 8.2 0.5 1.6 3.8 20.0
Japanese 1.6 0.4 1.7 2.4 0.4 11.0 1.6 0.9 20.0
Russian 2.3 2.5 0.3 3.3 1.9 1.7 5.9 2.1 20.0
Spanish 1.8 2.1 0.3 0.9 3.5 1.1 1.8 8.5 20.0
Total 20.1 20.1 20.3 19.4 19.2 18.9 20.8 21.2 160.0

Table A.6: Top 200 POS trigrams (MegaM)

Classified As
Actual Native Bulgarian Chinese Czech French Japanese Russian Spanish Total
Native 9.8 1.3 1.5 0.9 2.8 0.8 1.3 1.6 20.0
Bulgarian 0.7 9.7 0.1 1.9 2.6 0.2 2.7 2.1 20.0
Chinese 1.0 0.4 16.4 0.4 0.3 0.7 0.5 0.3 20.0
Czech 1.4 2.7 0.4 8.6 1.3 1.3 3.1 1.2 20.0
French 1.0 2.3 0.5 1.1 10.3 0.3 1.7 2.8 20.0
Japanese 1.4 0.5 0.7 1.3 0.7 14.0 1.2 0.2 20.0
Russian 1.3 2.5 0.2 4.1 1.6 0.8 8.3 1.2 20.0
Spanish 1.5 1.6 0.0 1.2 2.4 0.4 2.4 10.5 20.0
Total 18.1 21.0 19.8 19.5 22.0 18.5 21.2 19.9 160.0

Table A.7: Top 200 POS bigrams & trigrams (MegaM)

Classified As
Actual Native Bulgarian Chinese Czech French Japanese Russian Spanish Total
Native 15.8 0.4 0.1 1.1 1.0 0.3 0.7 0.6 20.0
Bulgarian 0.1 17.1 0.1 0.3 0.4 0.1 1.2 0.7 20.0
Chinese 0.5 0.3 17.8 0.4 0.1 0.3 0.5 0.1 20.0
Czech 0.3 0.9 0.0 14.8 0.6 0.5 2.4 0.5 20.0
French 0.3 1.1 0.1 0.7 15.6 0.1 1.0 1.1 20.0
Japanese 0.5 0.2 0.6 0.4 0.4 17.6 0.1 0.2 20.0
Russian 0.0 2.0 0.2 1.8 1.1 0.2 13.6 1.1 20.0
Spanish 0.3 0.6 0.0 0.4 2.1 0.0 1.4 15.2 20.0
Total 17.8 22.6 18.9 19.9 21.3 19.1 20.9 19.5 160.0

Table A.8: Function words and character bigrams & trigrams (MegaM)
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Classified As
Actual Native Bulgarian Chinese Czech French Japanese Russian Spanish Total
Native 15.8 0.4 0.0 1.1 1.0 0.4 0.3 1.0 20.0
Bulgarian 0.1 16.9 0.1 0.3 0.5 0.1 1.3 0.7 20.0
Chinese 0.6 0.3 17.7 0.5 0.1 0.3 0.4 0.1 20.0
Czech 0.4 1.2 0.1 14.8 0.8 0.3 2.0 0.4 20.0
French 0.4 1.0 0.0 0.5 15.9 0.0 1.1 1.1 20.0
Japanese 0.5 0.2 0.7 0.5 0.3 17.3 0.3 0.2 20.0
Russian 0.1 1.5 0.1 1.8 0.8 0.3 14.2 1.2 20.0
Spanish 0.2 0.9 0.0 0.5 1.7 0.0 1.1 15.6 20.0
Total 18.1 22.4 18.7 20.0 21.1 18.7 20.7 20.3 160.0

Table A.9: Function words and character bigrams & trigrams and top 200 POS bigrams &
trigrams (MegaM)

Classified As
Actual Native Bulgarian Chinese Czech French Japanese Russian Spanish Total
Native 10.4 1.6 0.6 1.8 4.2 0.2 0.5 0.7 20.0
Bulgarian 0.0 17.6 0.0 1.0 0.3 0.2 0.8 0.1 20.0
Chinese 0.9 0.8 15.2 1.1 0.1 0.4 1.2 0.3 20.0
Czech 1.3 2.9 0.1 10.9 1.6 0.3 2.6 0.3 20.0
French 0.5 2.9 0.0 2.3 8.4 0.2 2.8 2.9 20.0
Japanese 0.9 0.4 0.7 1.2 0.5 14.7 1.4 0.2 20.0
Russian 0.3 4.4 0.0 2.8 1.0 0.1 11.2 0.2 20.0
Spanish 0.6 4.6 0.0 1.2 2.4 0.0 2.4 8.8 20.0
Total 14.9 35.2 16.6 22.3 18.5 16.1 22.9 13.5 160.0

Table A.10: Character bigrams (Naive Bayes)

Classified As
Actual Native Bulgarian Chinese Czech French Japanese Russian Spanish Total
Native 8.3 1.6 1.0 1.0 4.6 1.0 1.5 1.0 20.0
Bulgarian 0.1 17.7 0.0 0.9 0.6 0.2 0.3 0.2 20.0
Chinese 0.4 0.6 15.2 1.1 0.3 0.4 1.1 0.9 20.0
Czech 0.6 4.2 0.0 8.8 2.0 1.0 2.4 1.0 20.0
French 0.0 3.3 0.2 2.8 8.5 0.1 1.6 3.5 20.0
Japanese 0.5 0.6 0.7 1.5 0.5 14.4 1.0 0.8 20.0
Russian 0.4 4.9 0.0 4.0 1.0 0.3 8.1 1.3 20.0
Spanish 0.3 5.3 0.0 2.0 2.4 0.4 2.5 7.1 20.0
Total 10.6 38.2 17.1 22.1 19.9 17.8 18.5 15.8 160.0

Table A.11: Character trigrams (Naive Bayes)
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Classified As
Actual Native Bulgarian Chinese Czech French Japanese Russian Spanish Total
Native 15.8 0.5 0.2 1.0 0.8 0.4 0.5 0.8 20.0
Bulgarian 0.1 17.1 0.1 0.3 0.4 0.1 1.2 0.7 20.0
Chinese 0.6 0.3 17.7 0.4 0.1 0.3 0.4 0.2 20.0
Czech 0.4 0.9 0.0 14.7 0.6 0.5 2.4 0.5 20.0
French 0.3 1.2 0.1 0.7 15.3 0.1 1.0 1.3 20.0
Japanese 0.5 0.2 0.6 0.4 0.4 17.6 0.1 0.2 20.0
Russian 0.1 2.3 0.1 1.7 0.9 0.2 13.6 1.1 20.0
Spanish 0.3 0.6 0.0 0.4 2.3 0.0 1.5 14.9 20.0
Total 18.1 23.1 18.8 19.6 20.8 19.2 20.7 19.7 160.0

Table A.12: Character bigrams & trigrams (Naive Bayes)

Classified As
Actual Native Bulgarian Chinese Czech French Japanese Russian Spanish Total
Native 13.2 1.2 0.9 0.8 1.7 1.1 0.4 0.7 20.0
Bulgarian 0.4 15.3 0.4 1.4 0.7 0.4 0.9 0.5 20.0
Chinese 0.6 1.0 17.2 0.0 0.3 0.3 0.3 0.3 20.0
Czech 2.3 2.5 0.5 9.8 1.6 1.0 1.9 0.4 20.0
French 1.6 3.1 0.2 1.6 10.0 0.0 1.3 2.2 20.0
Japanese 1.3 0.6 1.8 1.0 0.5 13.6 0.5 0.7 20.0
Russian 1.7 3.6 0.6 2.7 1.0 0.4 9.2 0.8 20.0
Spanish 1.2 2.8 0.3 0.8 2.3 0.6 0.6 11.4 20.0
Total 22.3 30.1 21.9 18.1 18.1 17.4 15.1 17.0 160.0

Table A.13: Function words (Naive Bayes)

Classified As
Actual Native Bulgarian Chinese Czech French Japanese Russian Spanish Total
Native 15.9 2.2 0.0 1.2 0.0 0.6 0.1 0.0 20.0
Bulgarian 5.7 11.2 0.1 2.5 0.0 0.5 0.0 0.0 20.0
Chinese 9.9 2.6 4.0 1.6 0.0 1.9 0.0 0.0 20.0
Czech 7.9 3.2 0.0 7.1 0.0 1.7 0.1 0.0 20.0
French 12.0 4.1 0.0 2.4 0.1 1.3 0.0 0.1 20.0
Japanese 4.9 2.8 0.0 3.2 0.0 9.0 0.1 0.0 20.0
Russian 7.0 4.8 0.2 5.9 0.1 1.5 0.4 0.1 20.0
Spanish 10.0 4.5 0.0 3.8 0.1 0.7 0.0 0.9 20.0
Total 73.3 35.4 4.3 27.7 0.3 17.2 0.7 1.1 160.0

Table A.14: Top 200 POS bigrams (Naive Bayes)

69



Classified As
Actual Native Bulgarian Chinese Czech French Japanese Russian Spanish Total
Native 10.6 0.6 1.1 1.1 0.6 3.4 2.6 0.0 20.0
Bulgarian 1.6 8.3 0.6 2.0 0.0 3.2 4.0 0.3 20.0
Chinese 4.2 1.2 10.5 0.2 0.0 2.6 1.3 0.0 20.0
Czech 2.9 1.4 0.4 3.8 0.0 8.0 3.2 0.3 20.0
French 6.1 3.7 1.1 1.4 1.0 3.8 2.5 0.4 20.0
Japanese 1.9 1.1 0.4 0.9 0.0 14.7 0.9 0.1 20.0
Russian 2.5 2.6 0.9 3.5 0.1 5.6 4.7 0.1 20.0
Spanish 5.3 3.7 0.6 1.8 0.5 4.1 3.0 1.0 20.0
Total 35.1 22.6 15.6 14.7 2.2 45.4 22.2 2.2 160.0

Table A.15: Top 200 POS trigrams (Naive Bayes)

Classified As
Actual Native Bulgarian Chinese Czech French Japanese Russian Spanish Total
Native 15.6 1.6 0.1 1.1 0.2 0.6 0.8 0.0 20.0
Bulgarian 4.1 11.2 0.2 2.7 0.1 0.6 1.1 0.0 20.0
Chinese 7.3 1.6 8.8 0.4 0.0 1.4 0.5 0.0 20.0
Czech 6.4 2.6 0.0 6.1 0.0 3.4 1.5 0.0 20.0
French 11.1 3.7 0.1 1.3 0.5 1.5 1.2 0.6 20.0
Japanese 4.4 1.9 0.2 1.7 0.0 11.2 0.6 0.0 20.0
Russian 6.1 3.8 0.3 4.6 0.1 2.1 2.7 0.3 20.0
Spanish 9.5 4.0 0.0 2.3 0.2 1.0 1.4 1.6 20.0
Total 64.5 30.4 9.7 20.2 1.1 21.8 9.8 2.5 160.0

Table A.16: Top 200 POS bigrams & trigrams (Naive Bayes)

Classified As
Actual Native Bulgarian Chinese Czech French Japanese Russian Spanish Total
Native 10.0 1.2 0.8 1.7 4.6 0.4 0.7 0.6 20.0
Bulgarian 0.1 17.7 0.0 1.0 0.5 0.2 0.3 0.2 20.0
Chinese 0.9 0.7 15.2 1.1 0.0 0.4 0.9 0.8 20.0
Czech 0.9 3.5 0.0 10.6 1.6 0.4 1.8 1.2 20.0
French 0.3 2.8 0.1 3.0 8.9 0.1 1.4 3.4 20.0
Japanese 0.9 0.6 0.5 1.4 0.5 14.4 1.0 0.7 20.0
Russian 0.4 5.3 0.0 4.1 0.9 0.2 7.9 1.2 20.0
Spanish 0.2 5.0 0.0 2.2 2.2 0.4 2.0 8.0 20.0
Total 13.7 36.8 16.6 25.1 19.2 16.5 16.0 16.1 160.0

Table A.17: Function words and character bigrams & trigrams (Naive Bayes)
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Classified As
Actual Native Bulgarian Chinese Czech French Japanese Russian Spanish Total
Native 14.7 2.1 0.0 0.7 1.7 0.5 0.3 0.0 20.0
Bulgarian 1.0 10.0 0.0 3.1 0.7 0.0 5.2 0.0 20.0
Chinese 2.2 0.3 14.4 0.5 0.1 0.6 1.9 0.0 20.0
Czech 2.6 1.4 0.0 13.0 0.5 0.0 2.5 0.0 20.0
French 1.5 2.2 0.0 1.6 10.1 0.0 4.5 0.1 20.0
Japanese 2.2 0.7 0.0 0.3 0.0 16.3 0.5 0.0 20.0
Russian 1.7 2.0 0.0 0.9 0.4 0.3 14.7 0.0 20.0
Spanish 3.2 2.4 0.0 1.8 2.6 0.1 5.7 4.2 20.0
Total 29.1 21.1 14.4 21.9 16.1 17.8 35.3 4.3 160.0

Table A.18: Function words and character bigrams & trigrams and top 200 POS bigrams &
trigrams (Naive Bayes)

71



THIS PAGE INTENTIONALLY LEFT BLANK

72



APPENDIX B:
MegaM Vs. Naive Bayes

Figure B.1: MegaM vs. Naive Bayes (Native f-scores)

Figure B.2: MegaM vs. Naive Bayes (Bulgarian f-scores)
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Figure B.3: MegaM vs. Naive Bayes (Chinese f-scores)

Figure B.4: MegaM vs. Naive Bayes (Czech f-scores)
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Figure B.5: MegaM vs. Naive Bayes (French f-scores)

Figure B.6: MegaM vs. Naive Bayes (Japanese f-scores)
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Figure B.7: MegaM vs. Naive Bayes (Russian f-scores)

Figure B.8: MegaM vs. Naive Bayes (Spanish f-scores)
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APPENDIX C:
Distribution of Transformation Rules

Machine Learning Tool: Naive Bayes
Features Accuracy Native Bulgarian Chinese Czech French Japanese Russian Spanish
DTR 0.335 0.226 0.285 0.534 0.299 0.274 0.368 0.213 0.422
CB Character bigrams
CT Character trigrams
CBT Character bigrams & trigrams
FW Function words
POSB Top 200 POS bigrams
POST Top 200 POS trigrams
POSBT Top 200 POS bigrams & trigrams
FW CBT Function words and character bigrams & trigrams
DTR Distribution of transformation rules

Table C.1: Distribution of transformation rules

Figure C.1: Distribution of transformation rules and it’s contribution
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APPENDIX D:
Intra-Regional Classification

Machine Learning Tool: Megam
Features Accuracy Asian f-score Slovic f-score Romance f-score Native
CB 0.75 0.821 0.730 0.697 0.754
CT 0.841 0.885 0.808 0.816 0.857
CBT 0.821 0.877 0.800 0.778 0.831
FW 0.715 0.778 0.705 0.666 0.710
POSB 0.597 0.733 0.549 0.490 0.618
POST 0.575 0.665 0.5481 0.535 0.551
POSBT 0.617 0.755 0.546 0.543 0.627
FW CBT 0.823 0.875 0.803 0.786 0.833
FW CBT
POSBT

0.825 0.876 0.795 0.793 0.839

Table D.1: Accuracies and F-scores for Intra-regional classification

Figure D.1: Accuracies comparison between individual classification and intra-regional classi-
fication
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Figure D.2: Regions vs. each other

Machine Learning Tool: Megam
Features Accuracy Chinese f-score Japanese f-score
CB 0.932 0.931 0.933
CT 0.945 0.944 0.945
CBT 0.950 0.949 0.950
FW 0.905 0.904 0.905
POSB 0.902 0.902 0.902
POST 0.850 0.849 0.850
POSBT 0.910 0.911 0.908
FW CBT 0.952 0.951 0.953
FW CBT
POSBT

0.955 0.954 0.955

Table D.2: Chinese vs. Japanese
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Machine Learning Tool: Megam
Features Accuracy Bulgarian f-score Czech f-score Russian f-score
CB 0.728 0.798 0.720 0.663
CT 0.823 0.871 0.809 0.785
CBT 0.8 0.846 0.787 0.763
FW 0.708 0.708 0.732 0.683
POSB 0.578 0.658 0.5481 0.525
POST 0.518 0.582 0.516 0.454
POSBT 0.583 0.678 0.546 0.525
FW CBT 0.810 0.850 0.803 0.773
FW CBT
POSBT

0.806 0.851 0.803 0.762

Table D.3: Bulgarian vs. Czech vs. Russian

Machine Learning Tool: Megam
Features Accuracy French f-score Spanish f-score
CB 0.807 0.807 0.807
CT 0.870 0.870 0.869
CBT 0.835 0.835 0.834
FW 0.772 0.776 0.768
POSB 0.752 0.749 0.755
POST 0.682 0.668 0.695
POSBT 0.750 0.751 0.748
FW CBT 0.845 0.844 0.845
FW CBT
POSBT

0.850 0.851 0.848

Table D.4: French vs. Spanish

Machine Learning Tool: MegaM
Features Accuracy Native Bulgarian Chinese Czech French Japanese Russian Spanish
CB 0.699 0.754 0.582 0.766 0.525 0.563 0.765 0.484 0.563
CT 0.794 0.857 0.704 0.836 0.654 0.710 0.836 0.635 0.709
CBT 0.780 0.831 0.677 0.834 0.630 0.650 0.833 0.611 0.649
FW 0.647 0.710 0.499 0.705 0.516 0.517 0.704 0.482 0.512
POSB 0.539 0.618 0.361 0.661 0.300 0.367 0.661 0.288 0.370
POST 0.488 0.551 0.319 0.565 0.283 0.358 0.564 0.249 0.372
POSBT 0.561 0.627 0.370 0.686 0.298 0.408 0.688 0.286 0.407
FW CBT 0.784 0.833 0.683 0.834 0.645 0.663 0.832 0.622 0.664
FW CBT
POSBT

0.787 0.839 0.677 0.837 0.638 0.675 0.836 0.606 0.673

Table D.5: Accuracies and F-scores after pipelining
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Figure D.3: Intran-regions (Accuracies)

Figure D.4: Intra-regions (F-scores)
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Figure D.5: Individual vs. Intra-regional piped value (Accuracies)

Figure D.6: Individual vs. Intra-regional piped value (Native F-scores)
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Figure D.7: Individual vs. Intra-regional piped value (Bulgarian F-scores)

Figure D.8: Individual vs. Intra-regional piped value (Chinese F-scores)
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Figure D.9: Individual vs. Intra-regional piped value (Czech F-scores)

Figure D.10: Individual vs. Intra-regional piped value (French F-scores)
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Figure D.11: Individual vs. Intra-regional piped value (Japanese F-scores)

Figure D.12: Individual vs. Intra-regional piped value (Russian F-scores)
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Figure D.13: Individual vs. Intra-regional piped value (Spanish F-scores)
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APPENDIX E:
Performances After Topics are Controlled

Machine Learning Tool: Megam
Features Accuracy Native Bulgarian Chinese Czech French Japanese Russian Spanish
LDA 0.561 0.610 0.675 0.823 0.371 0.567 0.762 0.308 0.346
LDA 100 0.478 0.488 0.559 0.753 0.443 0.352 0.625 0.249 0.320
LDA 90 0.452 0.368 0.537 0.710 0.422 0.398 0.592 0.2166 0.339
LDA 80 0.471 0.432 0.492 0.732 0.427 0.491 0.577 0.281 0.352
LDA 70 0.390 0.229 0.537 0.586 0.381 0.301 0.472 0.295 0.284
LDA 60 0.382 0.374 0.457 0.683 0.188 0.345 0.457 0.206 0.287
LDA 50 0.352 0.285 0.338 0.569 0.311 0.322 0.450 0.248 0.220
LDA 40 0.318 0.232 0.281 0.504 0.274 0.407 0.433 0.162 0.195
LDA 30 0.278 0.286 0.205 0.413 0.240 0.288 0.390 0.177 0.108
LDA 25 0.226 0.200 0.225 0.281 0.183 0.147 0.349 0.170 0.195
LDA 20 0.236 0.238 0.176 0.388 0.268 0.130 0.313 0.141 0.130
LDA 15 0.206 0.171 0.143 0.317 0.148 0.171 0.318 0.164 0.140
LDA 10 0.226 0.265 0.207 0.296 0.181 0.205 0.319 0.143 0.152
LDA 100 LDA coefficients after extracting 245 words identified by the TF-IDF threshold 100

Table E.1: LDA coefficients for 50 topics as a feature set
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Machine Learning Tool: Megam
Features Accuracy Native Bulgarian Chinese Czech French Japanese Russian Spanish
BOW 0.814 0.838 0.804 0.934 0.741 0.775 0.911 0.705 0.810
BOW 100 0.782 0.786 0.799 0.893 0.730 0.731 0.819 0.693 0.805
BOW 90 0.789 0.807 0.779 0.895 0.740 0.751 0.830 0.717 0.797
BOW 80 0.774 0.818 0.765 0.876 0.732 0.742 0.808 0.688 0.769
BOW 70 0.751 0.764 0.746 0.842 0.723 0.716 0.797 0.656 0.761
BOW 60 0.736 0.727 0.764 0.845 0.701 0.696 0.7533 0.666 0.731
BOW 50 0.706 0.653 0.758 0.824 0.690 0.686 0.689 0.631 0.702
BOW 40 0.680 0.653 0.708 0.830 0.675 0.661 0.659 0.580 0.663
BOW 30 0.599 0.538 0.673 0.773 0.594 0.570 0.576 0.506 0.556
BOW 25 0.531 0.474 0.589 0.705 0.502 0.544 0.511 0.441 0.491
BOW 20 0.481 0.415 0.467 0.648 0.477 0.473 0.480 0.431 0.457
BOW 15 0.388 0.301 0.380 0.491 0.428 0.372 0.412 0.359 0.359
BOW 10 0.305 0.225 0.233 0.343 0.342 0.293 0.370 0.311 0.285
BOW 100 Bag of words after extracting 245 words identified by the TF-IDF threshold 100

Table E.2: Bag of words

Machine Learning Tool: Megam
Features Accuracy Native Bulgarian Chinese Czech French Japanese Russian Spanish
CT 0.781 0.796 0.787 0.923 0.747 0.724 0.873 0.683 0.726
CT 100 0.746 0.743 0.772 0.88 0.691 0.711 0.787 0.652 0.74
CT 90 0.716 0.688 0.743 0.856 0.695 0.672 0.757 0.615 0.704
CT 80 0.713 0.713 0.741 0.878 0.655 0.68 0.738 0.605 0.698
CT 70 0.688 0.613 0.703 0.875 0.643 0.69 0.738 0.555 0.683
CT 60 0.674 0.663 0.705 0.842 0.627 0.639 0.728 0.557 0.644
CT 50 0.641 0.605 0.676 0.815 0.583 0.588 0.707 0.542 0.612
CT 40 0.589 0.531 0.587 0.788 0.509 0.576 0.651 0.477 0.59
CT 30 0.529 0.461 0.576 0.752 0.449 0.491 0.577 0.409 0.519
CT 25 0.476 0.449 0.48 0.733 0.383 0.417 0.528 0.352 0.466
CT 20 0.437 0.392 0.459 0.689 0.358 0.351 0.497 0.294 0.43
CT 15 0.413 0.39 0.438 0.648 0.362 0.322 0.462 0.269 0.404
CT 10 0.349 0.302 0.31 0.59 0.319 0.297 0.393 0.224 0.349
CT 100 Character trigrams, upper case, no space, stemmed, and after extracting 245 words

identified by the TF-IDF threshold 100

Table E.3: Character trigrams after applying TF-IDF words extractions
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Machine Learning Tool: Megam
Features Accuracy Native Bulgarian Chinese Czech French Japanese Russian Spanish
CT 0.736 0.732 0.756 0.898 0.675 0.67 0.848 0.643 0.683
CT 100 0.684 0.612 0.729 0.848 0.662 0.62 0.778 0.58 0.657
CT 90 0.658 0.579 0.679 0.845 0.65 0.593 0.759 0.522 0.643
CT 80 0.659 0.602 0.693 0.833 0.634 0.604 0.768 0.504 0.645
CT 70 0.65 0.569 0.676 0.832 0.622 0.591 0.731 0.552 0.63
CT 60 0.626 0.539 0.646 0.836 0.562 0.6 0.701 0.53 0.602
CT 50 0.593 0.546 0.591 0.817 0.541 0.537 0.688 0.462 0.581
CT 40 0.556 0.496 0.585 0.766 0.478 0.519 0.648 0.424 0.545
CT 30 0.498 0.386 0.54 0.704 0.442 0.465 0.578 0.374 0.488
CT 25 0.438 0.319 0.479 0.643 0.386 0.398 0.477 0.291 0.496
CT 20 0.424 0.314 0.437 0.64 0.367 0.392 0.481 0.329 0.418
CT 15 0.352 0.273 0.389 0.557 0.279 0.305 0.383 0.254 0.359
CT 10 0.282 0.213 0.229 0.499 0.2 0.251 0.399 0.175 0.266
CT 100 Character trigrams, upper case, no space, stemmed, no function words and after ex-

tracting 245 words identified by the TF-IDF threshold 100

Table E.4: Character trigrams (no function words) after applying TF-IDF words extractions

Machine Learning Tool: Megam
Features Accuracy Native Bulgarian Chinese Czech French Japanese Russian Spanish
C4 0.773 0.766 0.786 0.916 0.725 0.721 0.866 0.675 0.739
C4 100 0.738 0.67 0.781 0.862 0.71 0.752 0.749 0.636 0.738
C4 90 0.735 0.678 0.777 0.86 0.715 0.74 0.753 0.63 0.724
C4 80 0.728 0.655 0.776 0.856 0.695 0.729 0.77 0.633 0.697
C4 70 0.713 0.609 0.765 0.853 0.679 0.698 0.78 0.622 0.695
C4 60 0.703 0.635 0.752 0.842 0.673 0.68 0.777 0.592 0.672
C4 50 0.674 0.592 0.728 0.807 0.662 0.64 0.735 0.57 0.653
C4 40 0.644 0.537 0.674 0.805 0.604 0.652 0.691 0.535 0.642
C4 30 0.588 0.491 0.653 0.728 0.541 0.565 0.683 0.438 0.581
C4 25 0.548 0.456 0.587 0.707 0.501 0.507 0.59 0.441 0.565
C4 20 0.507 0.428 0.548 0.682 0.449 0.477 0.566 0.372 0.501
C4 15 0.417 0.32 0.49 0.607 0.333 0.377 0.492 0.281 0.379
C4 10 0.344 0.246 0.297 0.534 0.281 0.33 0.449 0.234 0.306
C4 100 Character quadgrams, upper case, no space, stemmed, and after extracting 245 words

identified by the TF-IDF threshold 100

Table E.5: Character quadgrams after applying TF-IDF words extractions
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